У науково-технічній та навчальній літературі зустрічаються різні підходи до класифікації ЦВП (і АЦП). Наведемо лише деякі ознаки класифікації, які найбільш повно відображають принципи побудови ЦВП. До них належать: метод вимірювання або вид структурної схеми ЦВП, метод аналого-цифрового перетворення, алгоритм перетворення, режим роботи, елементна база.
Метод вимірювання (або вид структурної схеми) є загальною класифікаційною ознакою ЗВТ, за якою ЦВП поділяють на три групи: прямого перетворення, зрівноважування (або порівняння) і комбіновані. ЦВП прямого перетворення побудовані за розімкнутою структурною схемою, яка не має негативного зворотного зв’язку з виходу на вхід приладу. Одночасно окремі ланки схеми ЦВП можуть бути охоплені зворотним зв’язком. До цієї групи належить більшість ЦВП.
У ЦВП зрівноважування в процесі вимірювання здійснюється порівняння вимірюваної і однорідної з нею зразкової (компенсаційної) величин. При цьому зразкова величина автоматично змінюється за певним законом від нуля до значення, приблизно рівного значенню вимірюваної величини. Рівність вимірюваної і зразкової величин фіксується компаратором (порівнювальним пристроєм). ЦВП цієї групи побудовані за замкнутою структурною схемою і мають негативний зворотний зв’язок з її виходу на вхід, у коло якого вмикається зворотний перетворювач, наприклад цифроаналоговий.
У свою чергу, ЦВП порівняння поділяють за кількістю параметрів, щодо яких здійснюється процес зрівноважування, на два види: ЦВП із зрівноважуванням за одним і двома параметрами. Переважна більшість ЦВП належать до першого виду. Як приклад ЦВП із зрівноважуванням за двома параметрами можна навести прилади для вимірювання амплітуди і фази гармонік змінних напруг (і струмів), комплексних опорів або їх складових та інших аналогічних величин (векторних чи комплексних). Особливість ЦВП із зрівноважуванням за двома параметрами полягає в тому, що в цих приладах виконуються два процеси зрівноважування, які здійснюються або незалежно один від одного, або взаємозв’язано, а це приводить до особливостей побудови вимірювальних схем. Крім того, швидкодія цих приладів у порівнянні з приладами першої групи значно нижча, вона визначається збіжністю процесу зрівноважування.
У комбінованих ЦВП використовуються обидва методи: методи прямого перетворювання в першому циклі (грубе вимірювання) і методи зрівноважування в другому циклі (точне вимірювання). Такі ЦВП називають приладами прямого зрівноважування.
За методом аналого-цифрового перетворення всі ЦВП, як і АЦП, поділяють на чотири групи: ЦВП час-імпульсного перетворення (час-імпульсні ЦВП), ЦВП частотно-імпульсного перетворення (частотно-імпульсні ЦВП), ЦВП кодоімпульсного перетворення (кодоімпульсні ЦВП) та ЦВП просторового перетворення, або кодування.
Метод час-імпульсного перетворення передбачає виконання двох операцій: лінійного перетворення вимірюваної величини в інтервал часу і перетворення інтервалу часу в число імпульсів, пропорційне значенню вимірюваної величини. Це число імпульсів і служить результатом вимірювання. Час-імпульсні ЦВП є найбільш розповсюдженими приладами і використовуються для вимірювань різних фізичних величин: напруги, частоти, фазових зсувів, параметрів R, L, C тощо. Перевага цих приладів полягає в порівняльній простоті апаратурної реалізації при досить припустимих для практики основних технічних характеристиках.
Метод частотно-імпульсного перетворення передбачає перетворення вимірюваної величини в пропорційну частоту імпульсів, яку вимірюють цифровим методом. Частотно-імпульсні прилади найбільш прості, але їх розвиток стримується відсутністю високоточних і простих частотних перетворювачів різних фізичних величин. Поки що вони знаходять переважне застосування в цифрових вольтметрах постійного струму або в приладах з проміжним перетворенням вимірюваної величини, наприклад температури, в постійну або повільно змінювану напругу.
Метод кодоімпульсного перетворення полягає в тому, що вимірювана величина X зрівноважується зразковою величиною
|
з рівномірним (а) та нерівномірним (б) зрівноважуванням
При паралельному зрівноважуванні відбувається одночасне (паралельне) формування усіх рівнів зразкової величини
Рис. 4. Часові діаграми методів паралельного (а) та паралельно-послідовного (б) зрівноважування.
При паралельно-послідовному зрівноважуванні формується кілька шкал зразкової величини
Кодоімпульсні ЦВП відрізняються найбільшою точністю, їх швидкодія (або розрядність) збільшується із збільшенням похибки квантування.
Метод просторового перетворення передбачає проміжне перетворення вимірюваної величини в лінійне або кутове переміщення, яке потім кодується. Для цього використовують спеціальну кодуючу маску або диск і пристрій зчитування. У вітчизняних серійних ЦВП цей метод практично не застосовується, тому зупинятися на ньому не будемо. Вкажемо тільки, що ЦВП просторового перетворення забезпечують найвищу швидкодію, як і паралельні АЦП.
За алгоритмом перетворення вимірюваної величини в код ЦВП (і АЦП) поділяють на три групи: послідовної лічби, порозрядного кодування і зчитування.
Характерною ознакою методів і ЦВП послідовної лічби є те, що зрівноважування вимірюваної величини X відбувається послідовним накопиченням (підсумовуванням) одиничних мір зразкової величини x0(t), які є сходинками квантування (DXк = const) (рис. 3, а). Результат перетворення відповідає моменту рівності вимірюваної X та зразкової x0(t) величин, він визначається кількістю одиничних мір DXк, які відповідають цьому моменту, і відображається послідовним (протягом часу) одиничним (унітарним) кодом. До методів послідовної лічби належать час-імпульсний і частотно-імпульсний методи, а також кодоімпульсний метод з рівномірно-східчастим зрівноважуванням і деякі варіанти методу просторового перетворення.