Минимальные приведенные значения экспериментально получить не удается из-за дисперсии материала. Приведенная к единице длины постоянная времени материальной дисперсии приблизительно одинакова для всех волноводных мод и зависит лишь от ширины спектра излучения и дисперсионных свойств материала:

Используя (9.1), можно при необходимости перейти от

Экспериментальная дисперсионная кривая для кварца, легированного фосфором (материал сердечника практически всех основных типов световодов для ВОЛС), представленная на рис. 9.3,. показывает, что при λ≈3 мкм

=0 и соответственно

= 0. Именно этим прежде всего и определяется значимость спектральной области вблизи λ =1,3 мкм.
Расчет показывает, что

в многомодовых световодах эффекты шнутримодовой дисперсии оказываются пренебрежимо малыми по сравнению с другими видами искажений и, в частности, с дисперсией материала. Поэтому, переходя к общей оценке, внутри-.модовую дисперсию не учитываем.
Рассмотренные эффекты — волноводная и материальная дисперсия — действуют одновременно; решение задачи уширения им-лульса при этом резко усложняется: наряду с членами, которые приводят к значениям

и

появляется еще суперпозиционный член

. В первом приближении можно считать, что суммарное уширение импульса

Характерно, что

не соответствуют в точности значениям, получаемым из (9.11), (9.13), (9.14). Приведенные на рис. 9.4 расчетные кривые иллюстрируют сказанное и позволяют сделать следующие выводы: при учете двух механизмов дисперсии значение

заметно сдвигается относительно точки

, в градиентном световоде, возбуждаемом светодиодом, уширение импульса почти полностью определяется материальной дисперсией -и оптимизация профиля

заметных преимуществ не дает; в оптимизированном многомодовом градиентном световоде, возбуждаемом монохроматическим лазером, дисперсионное уширение .импульса может быть снижено до 15 пс/км (теоретический предел).

Рис. 9.3. Спектральная характеристика дисперсии кварца
Рис.9.4. Теоретическая зависимость

от параметра

градиентного световода:
1 — учитывается только модовая дисперсия; 2—

=15 нм (светодиод); 8 —

= 1 нм (инжекционный лазер); 4—

= 0,2 нм (лазер с распределенной обратной связью); кривые 2—4 рассчитаны для

=0,9 мкм
Отметим еще один очень важный для дисперсионных расчетов эффект — связь мод в многомодовых световодах. Выше предполагалось, что отдельные моды (или лучи с разными углами падения) распространяются по волокну независимо друг •от друга и не смешиваются. Естественно, что идеализация и наличие в реальном световоде тех или иных нерегулярностей (флуктуации состава и соответственно величины п, непостоянства геометрии, микроизгибов, нарушений на границе раздела сердцевина— оболочка и т. п.) приводят к «перекачке» энергии между модами. В представлениях геометрической оптики это значит, -что луч с углом падения

преломившись на неоднородности, меняет угол распространения на

Возможность проявления этого эффекта становится очевиднее, если вспомнить, что на 1 км пути укладывается около 10
9 длин волн света и в то же время происходит более 10
6 актов отражения светового луча от границы сердцевина — оболочка. Связь или смешение мод приводит ж тому, что часть энергии медленных мод переходит в быстрые .и наоборот; это ведет к некоторому выравниванию времен распространения медленных и быстрых мод — в итоге дисперсия уменьшается. Математическое описание явления в общем виде «очень сложное, важнейший результат смешения мод состоит в •следующем:

где

— характеристическое расстояние, на котором устанавливается постоянный модовый состав. Дисперсионное размытие светового импульса «набегает» не пропорционально длине световода L, а пропорционально

т. е. значительно слабее. Величина L0 может быть определена лишь экспериментально, она тем больше, чем совершеннее световод, и может достигать десятков километров. Естественно, что при

сохраняется прежний закон:

5. Затухание
Причинами потерь оптической мощности при распространении сигнала по волокну являются различные виды поглощения, а также обусловленная рассеянием деформация углового распределения лучевого потока и вытекание возникающих внеапертурных лучей из сердцевины.
Для количественной оценки потерь пропускания используется удельное затухание оптического сигнала, выраженное в дБ/км,

где

— мощности каналируемого излучения на входе и
выходе световода длиной L км. Если имеются различные невзаимодействующие механизмы потерь, то определенные по (9.17) .затухания складываются, т. е.

где

— удельное затухание, вносимое

механизмом потерь.
Рассмотрим наиболее существенные из этих механизмов.
1. Фундаментальные потери, присущие материалу и принципиально неустранимые. Выделяют два вида фундаментальных потерь. Один вид — собственное поглощение в материале световода (потери

|, которое в УФ-области связано с электронными переходами между разрешенными энергетическими уровнями атомов, а в ИК-области — с многофотонным и колебательным возбуждением молекул. «Хвосты» полос поглощения могут доходить с рабочего диапазона длин волн световода, что проявится в затухании. Экспериментально установлено, что для кварца уже при

0,6 мкм УФ-поглощение становится меньше 1 дБ/км, а ИК-поглощение, эффективное при

8... 12 мкм, при

1 мкм вообще не сказывается.
Другой вид фундаментальных потерь — релеевское рассеяние на различного рода нерегулярностях, приводящее к потерям

где постоянная

тем меньше, чем ниже температура «замора-живания» флуктуации состава световода, охлаждаемого при изготовлении.
Для кварца при его тщательной обработке экспериментально получено

0,7 дБ/(км-мкм-4),что для

0,82 мкм дает

~1,5 дБ/км, а при

=1,55 мкм

^0,14 дБ/км. Следует подчеркнуть, что

не универсальная константа, она зависит и от выбора материала световода, и от технологии его обработки, т. е. принципиально можно ожидать получения меньших, чем достигнуто в кварце, релеевских потерь. Наиболее характерным моментом в (9.19) является сильная зависимость

от

из чего следует, что в дальней ИК-области релеевские потери становятся пренебрежимо малыми.