Cевастопольский Национальный Университет ядерной энергии и промышленности
Контрольная работа по дисциплине
Контроль и управление химико-технологическими процессами
Тема:
Физические основы измерительных преобразователей
Выполнил:Студент заочного отделения
Факультета ЯХТ
Д-34А
Бурак А.В.
Севастополь
2006
План
1. Тепловые преобразователи
2. Основные виды тепловых преобразователей
2.1 Термоэлектрические преобразователи
2.2 Применение термоэлектрических преобразователей в термометрах
2.3 Терморезисторы
Литература
1. Тепловые преобразователи
Тепловыми называют преобразователь, принцип действия которого основан на тепловых процессах. Естественная входная величина его – температура. К таким преобразователям относятся термоэлектрические преобразователи и терморезисторы. Термоэлектрические преобразователи часто называют термопарами.
ТЕРМОПАРА - термочувствительный элемент в устройствах для измерения температуры, системах управления и контроля. Состоит из двух последовательно соединенных (спаянных) между собой разнородных проводников или (реже) полупроводников. Если спаи находятся при разных температурах, то в цепи термопары возникает электродвижущая сила (термоэлектродвижущая сила), величина которой однозначно связана с разностью температур "горячего" и "холодного" контактов. ТЕРМОРЕЗИСТОР - проводник или полупроводник, сопротивление которого достаточно сильно зависит от температуры. Часто терморезистор называют просто термистором. Широкое применение получили полупроводниковые резисторы, электрическое сопротивление которых существенно убывает или возрастает с ростом температуры. Используются в измерителях мощности, устройствах для измерения и регулирования температуры и др.
2. Основные виды тепловых преобразователей
2.1 Термоэлектрические преобразователи
Принцип действия термоэлектрических преобразователей или термопар основан на явлении термоэлектрического эффекта, которое заключается в том, что в цепи из двух различных проводников (или полупроводников), соединенных между собой концами при разности температур соединений возникает ЭДС, называемая термоэлектродвижущей силой (термо-ЭДС). Такая цепь называется термоэлектрическим преобразователем или термопарой. Проводники, составляющие термопару, называются термоэлектродами, а места их соединения спаями. Рабочий конец термопары, помещенный в измеряемую среду, называют горчим спаем, а свободный (нерабочий) – холодным. Один из термоэлектродов называется термоположительным, а второй – термоотрицательным. Термоположительным называют тот проводник, от которого термоток течет в холодном спае, а термоотрицательным – тот проводник, к которому течет термоток в том же холодном спае.
При небольшом перепаде температур между спаями термо-ЭДС пропорциональна разности температур. Величина термо-ЭДС зависит только от природы проводников и от температуры спаев и не зависит от распределения температур между спаями.
Явление термоэлектричества принадлежит к числу обратных явлений. Если через цепь, состоящую из двух различных проводников или полупроводников, пропустить электрический ток, то в одном спае выделяется тепло, а на другом поглощается.
В разнородных проводниках количество свободных электронов на единицу объема различно.
Обозначим
, – плотность свободных электронов соответственно в проводниках и . Пусть > . При соединении проводников в спаях происходит диффузия электронов из термоэлектрода в термоэлектрод . В результате термоэлектрод заряжается положительно, а термоэлектрод – отрицательно.В спаях возникает электрическое поле, т.е. ЭДС. Обозначим эти ЭДС:
- в спае 1, - в спае 2.В замкнутой цепи из двух разнородных проводников образуется 2 ЭДС, направленные встречно.
Результирующая ЭДС:
(1)Диффузия электронов, а следовательно и возникающая ЭДС, в спае очень сильно зависит от температуры. Если спаи 1 и 2 находятся при одинаковой температуре, то результирующая ЭДС в цепи равна нулю:
Если спай 1 поместить в измеряемую среду, а спай 2 – в помещение, где температура t0 = const, то возникает результирующая ЭДС:
Если температуру в помещении поддерживать постоянной, то
(2)В этом случае, измерив результирующую ЭДС (
) по выражению (2), можно определить и температуру в спае 1.Зависимость (2) определяется экспериментально. Определение зависимости ЭДС термопары (
) от температуры рабочего спая при заданном значении свободного спая и для выбранных материалов термоэлектродов и называется градурировкой термопары.Свободный спай термопары проходит через схему прибора. Измеряя ЭДС термопары (ЕТП) с помощью прибора и используя градуировочную таблицу, мы определяем температуру в рабочей точке 1.
Градуировочная таблица термопары платинородий-платина при температуре свободных концов 00С.
Т-ра рабоч. концов | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
Термо-ЭДС в мВ | |||||||||
-20 | |||||||||
-10 | |||||||||
0 | |||||||||
10 | |||||||||
20 | |||||||||
30 | |||||||||
40 | |||||||||
50 | |||||||||
60 | |||||||||
70 | |||||||||
80 | |||||||||
90 | |||||||||
100 |
В соответствии с ГОСТ имеются термопары нескольких градуировок:
1.Платинородий – платиновые.
Обозначение: гр.ПП-1
Пределы измерения температуры: -200 ÷ 13000С.
Чувствительность:
Эти термопары самые точные, применяются в качестве образцовых, но они дорогие.
2.Хромель – алюмелевые.
Обозначение: гр.ХА
Пределы измерения температуры: -2000 ÷ 10000С.
Чувствительность:
= 4,03 мВ/1000С.3.Хромель – копелевые.
Обозначение: гр.ХК
Пределы измерения температуры: -2000 ÷ 6000С.
Чувствительность:
= 8,3 мВ/1000С.В особых случаях применяются нестандартные термопары, например, вольфраммолибденовые до t = 23000С.
В указанных пределах изменения температур для вышеперечисленных термопар зависимость ЕТП = еt(t) – Kлинейна.
2.2 Применение термоэлектрических преобразователей в термоэлектрических термометрах
Термоэлектрическими термометрами называют устройства для измерения температуры. Они содержат термоэлектрический преобразователь, который подключается к электроизмерительному прибору (милливольтметру или потенциометру).
Конструкция термоэлектрических преобразователей зависит от условий их применения:
- термоэлектрические преобразователи для контроля и измерения температуры жидкостей и газов;
- термоэлектрические преобразователи для контроля и измерения температуры твердых тел.
Термоэлектрические преобразователи соединяют со вторичными приборами с помощью термоэлектрических проводов, которые как бы наращивают термоэлектроды.
Вторичными приборами, работающими в комплекте с термоэлектрическими преобразователями, являются магнитоэлектрические милливольтметры и потенциометры. Работа магнитоэлектрического милливольтметра основана на взаимодействии рамки, образованной проводником, по которому протекает ток, с полем постоянного магнита.
Ток от термопары, протекая по проводникам рамки, создает вращающий момент:
МВ= С ·2 rlnBI, (3)
где: С – коэффициент, зависящий от параметров рамки;
r- радиус рамки;
l – длина витка в зазоре между полюсным наконечником и сердечником;
n- число витков;
B - магнитная индукция;
I - сила тока, протекающая через рамку от термопары.
Все множители выражения 3 постоянны, кроме силы тока, поэтому данное выражение можно записать в виде:
МВ= С1 · I, (4)
где: С1 = С ·2 rlnB.
Величина противодействующего упругого момента, создаваемого спиральными пружинами, равна: