На принципиальных схемах направления токов и напряжений, принимаемые за условно-положительные, могут показываться стрелками.
Для обзначения токов и напряжений в формулах общепринятым является использование латинских букв I (для токов) и U (для напряжений).
При анализе цепей, находящихся под гармоническими воздействиями, широкое распространение получил символический метод комплексных амплитуд (комплексный метод, или, иногда просто — символический метод). Он основан на представлении гармонических функций с помощью комплексных чисел или, точнее, на преобразовании исходных гармонических функций из временной области (области вещественного переменного t) в частотную область (область мнимою аргумента jw).. Выглядит это так.
Каждой гармонической функции времени a(t)=Ат cos(
Причем модуль комплексной величины a(t) равен амплитуде гармонической функции
Величина
a(t)=Ат cos(
Известно, что в установившемся режиме работы токи и напряжения всех ветвей линейной электрической цепи, находящейся под гармоническим воздействием, являются функциями времени одной частоты, т.е. токи и напряжения отдельных ветвей в этом случае отличаются только амплитудами и начальными фазами, поэтому полная информация о них при известной частоте содержится в соответствующих комплексных амплитудах. Зная амплитуды и начальные фазы токов или напряжений любой ветви, всегда можно однозначно найти их комплексные амплитуды. И обратно, по известной комплексной амплитуде можно однозначно установить амплитуду и начальную фазу исходного гармонического колебания.
Таким образом, каждой гармонической функции времени a(t) можно единственным образом поставить в соответствие комплексное число
Наряду с комплексными амплитудами в качестве изображений гармонических функций на комплексной плоскости широко используются другие комплексные величины — комплексные действующие значения:
Все правила, устанавливающие соответствие между операциями над гармоническими функциями времени и операциями над их комплексными амплитудами, справедливы и для операций над комплексными действующими значениями гармонических функций.
В большинстве реальных усилии тельных схем на транзисторах.допущение о гармоническом характере входных воздействий оказывается вполне работоспособным. Если далее предположить, что цепь линейна (это выполняется, если амплитуда входных воздействий невелика, а транзистор усилителя находится в режиме линейного усиления), то становится вполне возможным применить метод комплексных амплитуд для мало сигнального анализа транзисторных усилительных схем. Более того, мы можем даже избавиться от комнлекснозначности амплитуд, если добавим требование об отсутствии фазовых сдвигов между сигналами, что близко к истине при рассмотрении достаточно низких частот.
Анализируя схемы методом комплексных амплитуд, мы будем говорить о комплексных токах и напряжениях (
В схемах при установлении направлений переменных токов и напряжений, заданных комплексными значениями, действуют все те же правила, что были описаны для постоянных токов и напряжений (т.е. знак "плюс" означает совпадение с направлением, условно принятым за положительное, а знак "минус" — несовпадение). Для условно-положительных направлений, когда это возможно, выбираются направления, совпадающие с направлениями реальных токов и напряжений, действующих в анализируемых цепях.
В различной литературе могут использоваться разные способы обозначения амплитуд, действующих значений и других параметров сигналов и схем; мы будем придерживаться следующей системы.
Зависящие от времени (как правило, гармонические) переменные электрические показатели (например, токи и напряжения) в цепях будем обозначать малыми латинскими буквами: i(t), u(t) и т.д. При этом, если нет необходимости делать особый акцент на временной зависимости мгновенных значений этих показателей, если характер данных зависимостей не определен, не имеет значения для рассматриваемого вопроса или если в зависимостях присутствует не только гармоническая, но и постоянная составляющая (показатели вообще могут быть константами), то будем использовать традиционные обозначения большими латинскими буквами: I, U и т.д.
Как правило, нам придется отдельно рассматривать переменные и постоянные составляющие токов и напряжений, в цепях. При этом для обозначения постоянных составляющих мы будем пользоваться дополнительным индексом "0", а для обозначения переменных составляющих — дополнительным индексом "-". Т.е. для полных токов и напряжений в цепях действуют формулы: U=Uо+
Анализируя электрические цепи методом комплексных амплитуд, мы приходим к комплексным значениям некоторых реальных параметров этих схем (комплексные сопротивления, проводимости, коэффициенты усиления и т.п.). Все такие величины обычно не принято обозначать так, как мы это делаем для комплексных амплитуд и действующих значений, — точкой вверху. Для каждого случая, как правило, есть свое устоявшееся обозначение. Объединяет их использование прописных латинских букв (G, Y, Н и т.д.). Соответствующие же малые латинские буквы (g, у,h и т.д.) применяются для обозначения действительной составляющей таких параметров (обычно комплекснозначные параметры становятся действительными при соблюдении определенных условий, применение в формулах малых латинских букв означает, что данные условия предполагаются выполненными).
Заметим также, что иногда параметры элементов схем могут зависеть от того, рассматриваем ли мы поведение данного элемента под действием постоянных токов и напряжений или делаем то же самое для их переменных составляющих. В общем случае нет какой-то универсальной методики различения таких параметров — следует внимательно читать текстовые комментарии и понимать суть физических процессов в цепях. Однако часто речь идет о так называемых статических и дифференциальных параметрах. Мы будем придерживаться системы, когда буквенный индекс, сопровождающий статические параметры, пишется с прописной буквы (