Министерство образования РБ
Учреждение образования
« Гомельский Государственный
университет имени Ф. Скорины »
Математический факультет
Кафедра дифференциальных уравнений
Курсовая работа
«Уравнения равновесия»
Исполнитель:
Студентка группы М-41 ____________ Поляк Е. М.
Научный руководитель:
Кандидат физико-математических наук
____________ Вересович П.П.
Гомель 2006
Содержание
Введение 3
Постановка задачи 4
Уравнения равновесия 5
Решение уравнений равновесия 12
Заключение 16
Список использованной литературы 17
Актуальным направлением научно-технического прогресса является развитие и широкое использование возможностей современных высокопроизводительных компьютеров, сетей мультипрограммных ЭВМ и на этой основе - применение математических методов моделирования в научных исследованиях. Развитие вычислительной техники в Республике Беларусь приводит к необходимости создания систем и сетей ЭВМ, эффективно обслуживающих запросы различных пользователей. Благодоря задачам, связанным с математическим моделированием мультипрограммных вычислительных систем и анализом их производительности, с проектированием и анализом сетей передачи данных и сетей ЭВМ теория сетей массового обслуживания (СМО) является сравнительно новым и быстро развивающимся разделом теории массового обслуживания.
Исходным материалом для аналитического исследования СМО является стационарное (инвариантное) распределение вероятностей состояний. Ввиду сложности и многомерности случайных процессов, описывающих функционирование таких сетей, большинство аналитических результатов связано с получением стационарного распределения в форме произведения множителей, характеризующих стационарное распределение отдельных узлов сети.
Актуальным вопросом, связанным с исследованием СМО является доказательство инвариатности стационарного распределения таких сетей относительно функционального вида распределений длительности обслуживания в узлах, позволяющее при проектировании и эксплуатации реальных сетей, считать, что обслуживание в узлах имеет наиболее простое для анализа распределение - экспоненциальное.
Сеть состоит из двух приборов, на каждый из которых поступает простейший поток с параметрами
Пусть
Требуется доказать, что стационарное распределение
где
т.е. когда
Введем случайный процесс
где
Пусть существует стационарное эргодическое распределение процесса
Изучим поведение процесса
Введем в рассмотрение событие А, состоящее в том, что
а) Предположим, что за время от
б) Тому, что за время от
Тому, что за время от
в) Тому, что за время от
Тому, что за время от