Смекни!
smekni.com

Термостабилизированный логарифмический усилитель (стр. 1 из 3)

Мордовский государственный университет имени Н.П. Огарева

Факультет электронной техники

Кафедра микроэлектроники

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

к курсовому проекту по микросхемотехнике

на тему: “Термостабилизированный логарифмический усилитель”.

Автор курсового проекта Бармин А.В.

Руководитель проекта А. В. Сокольников

Саранск 2002


РЕФЕРАТ

Пояснительная записка содержит 31 страницу печатного текста, 3 рисунка, 5 таблиц, 5 приложений, при написании использовалось 5 источников литературы.

Перечень ключевых слов: трансдиодная схема, пикоамперметр, термостабилизация, транзистор, логарифмический усилитель, обратная связь, операционный усилитель.

Цель работы: разработка термостабилизированного логарифмического усилителя.

Объект разработки: термостабилизированный логарифмический усилитель.

Методы разработки: схемотехнический синтез и разработка конструкции.

Полученные результаты: разработана электрическая схема и печатная плата.

Степень внедрения: не рассматривалась.

Эффективность: не рассчитывалась.

Область применения: устройство может применяться при измерениии малых токов.

Основные конструкционные и эксплуатационные характеристики: термостабилизированный логарифмический усилитель выполнен на односторонней плате с размерами

, динамический диапазон 8 декад, двуполярное напряжение питания 15 В.

СОДЕРЖАНИЕ

Введение

1. Синтез структурной схемы

2. Синтез электрической схемы

3. Разработка топологии печатной платы

4. Конструкция печатной платы

5. Макетирование и наладка

Заключение

Список использованных источников

Приложения


ВВЕДЕНИЕ

В данной работе описан логарифмический усилитель с температурной стабилизацией. В таких приборах наибольший динамический диапазон входных токов может быть достигнут использованием трансдиодного включения транзисторов в цепи обратной связи операционного усилителя, температурная ошибка передаточной функции которого равна

. Для точных измерений в широком диапазоне температуры такая ошибка недопустима.

В общем случае возможны четыре варианта включения нелинейного элемента в цепь отрицательной обратной связи, для которых характерны различные диапазоны работы. Расширению динамического диапазона и улучшению точности логарифмических преобразователей препятствуют, прежде всего, обратный ток насыщения, омическое сопротивление логарифмирующих

переходов и влияние температуры.

Основная погрешность логарифмических преобразователей от изменения температуры связана с нестабильностью падения напряжения на логарифмирующем элементе. Значение этого напряжения зависит от начального тока смещения. Температурная зависимость для кремниевого диода – приблизительно

град. Для компенсации температурного изменения падения напряжения на логарифмирующем элементе в последующие цепи включается аналоговый элемент. Для транзисторных логарифмических преобразований используют два подобранных транзистора. С помощью второго транзистора удается также компенсировать падение напряжения на нелинейном элементе.

В данной работе исследована возможность построения термостабилизированого логарифмического усилителя постоянного тока с динамическим диапазоном в 8 декад, высокой точностью логарифмического преобразования и практически нулевой температурной зависимостью показаний, с помощью транзисторной сборки К198НТ5Б, где один транзистор применяется в для измерения температуры кристалла, а другой для нагревания кристалла.


1. СИНТЕЗ СТРУКТУРНОЙ СХЕМЫ

Приборы с логарифмической характеристикой широко применяются для измерения и регистрации постоянных токов, величина которых во время измерения изменяется в широких пределах.

Рассмотрим структурную схему такого прибора.

Рис.1Структурная схема термостабилизированного логарифмического усилителя

ОУ1 – входной операционный усилитель;

ОУ2 – выходной операционный усилитель;

ОУ3 – операционный усилитель;

ЛЭ – логарифмирующий элемент;

Н – нагреватель;

ДТ – датчик температуры.

Принцип работы заключается в том, что сигнал поступает на вход входного операционного усилителя, логарифмируется, и через выходной операционный усилитель подается на выход схемы.

Особенностью данной схемы, устраняющей температурную зависимость показаний, является оформление в одном корпусе логарифмического элемента, датчика температуры и нагревателя, что приводит к расширению динамического диапазона и улучшению точности логарифмических преобразований.

Принцип температурной стабилизации в данном приборе осуществляется путем измерения температурным датчиком температуры корпуса, усиления тока разности температур операционным усилителем, при превышении температуры окружающей среды над температурой корпуса, и подачи этой разности на нагреватель. Нагреватель, в свою очередь, повышает температуру корпуса до температуры окружающей среды.

2. СИНТЕЗ ЭЛЕКТРИЧЕСКОЙ СХЕМЫ

В логарифмических усилителях в качестве логарифмического элемента обычно используется трансдиодная схема, температурная ошибка передаточной функции которой равна

. Для точных измерений в широком диапазоне температуры такая ошибка недопустима.

В данной работе исследована возможность построения термостабилизированого логарифмического усилителя с помощью транзисторных сборок К198НТ5 и К198НТ1, где один транзистор применяется в для измерения температуры кристалла, а другой для нагревания кристалла.

Принципиальная схема устройства показана в приложении 2. Транзистор VT4 расположен на кристалле симметрично относительно дифференциальной пары VT1, VT2 и поэтому используется для нагревания. Транзистор VT5 в диодном включении служит датчиком температуры, напряжение на нем изменяется на

мВ/
.

Напряжение с VT5 подается на неинвертирующий вход DA3, на второй вход которого подано опорное напряжение от стабилитрона VD1, через резистивный делитель. Выход DA3 управляет базовым током VT4. Ток коллектора VT4 нагревает кристалл. Резистор и конденсатор в цепи обратной связи DA3 служат для стабилизации системы автоматического регулирования температуры, предотвращая переход в режиме переключения.

Входной сигнал поступает через резистор R1 на инвертирующий вход усилителя DA1 и на логарифмический каскад на транзисторе VT1. Напряжение на эмиттерном переходе логарифмирующего транзистора VT1 определяется входным током:

.(2.1)

Поскольку напряжение на эмиттерном переходе компенсирующего транзистора VT2 определяется аналогичным образом, для потенциала базы VT2:

.(2.2)

Для однотипных транзисторов с одинаковыми обратными токами и температурой переходов множитель

, что исключает влияние обратных токов насыщения.

Частотный диапазон логарифмических усилителей зависит от входного тока. Однако для нулевого входного сигнала, когда в цепь включено большое сопротивление нелинейного элемента, на выходе присутствует шумовой сигнал. Для уменьшения уровня шума необходимо ограничивать полосу частот, это достигается включением конденсатора С1 параллельно нелинейному элементу VT1.

Прологарифмированный сигнал с выхода DA1 подается на вход неинвертирующего усилителя DA2, после которого поступает на выход устройства.


3. РАЗРАБОТКА ТОПОЛОГИИ ПЕЧАТНОЙ ПЛАТЫ

Печатная плата представляет собой изоляционное основание, на котором имеется совокупность печатных проводников, контактных площадок или переходов.

Разработка топологии печатной платы начинается с рационального размещения элементов на плате.

Размещение радиоэлементов и интегральных микросхем предшествует трассировке печатных связей и во многом определяет эффективность трассировки.

Трассировка заключается в нахождении приемлемого компромисса с учетом схемотехнических требований (минимизация помех), конструкторских и технологических требований (минимизация изгибов трасс, перемычек из объемного провода). При увеличении числа слоев, трассировка упрощается, но стоимость платы растет. При малом числе слоев плата дешевле, но увеличивается сложность трассировки без перемычек, которые увеличивают стоимость сборки и уменьшают надежность платы. В печатной плате при пересечении проводников получается электрический контакт. Если он не нужен, необходимо изменять линию проведения одного из проводников, либо один из проводников выполнять на другой стороне платы. Длина проводников должна быть минимальной. Рисунок проводников должен наилучшим способом использовать отведенную для него площадь. Трассировка осуществляется вручную или с помощью САПР.

Основной метод размещения радиоэлементов – плоский многорядный. Задача компоновки заключается в том, что с одной стороны необходимо разместить элементы как можно более плотно, а с другой стороны - обеспечить наилучшие условия для трассировки, электромагнитной и тепловой совместимости, автоматизации сборки, монтажа и контроля.