Смекни!
smekni.com

Теория телетрафика (стр. 3 из 3)

Рисунок 7 График зависимости v = f(Y)

Рисунок 8 График зависимости h= f(Y)

3. Построим зависимость величины потерь Ev,v(Y) от интенсивности поступающей нагрузки при фиксированном значении числа линий в направлении к УСС.

Результаты расчета при v = const = 20 таб.6


Таблица 6

№п.п 1 2 3 4 5 6 7 8 9 10
У, Эрл. 7,70 8,16 8,44 8,83 9,40 10,46 11,04 11,45 11,91 12,92
Ртабл. 0,0001 0,0002 0,0003 0,0005 0,001 0,003 0,005 0,007 0,01 0,02

Рисунок 9 График зависимости Р =f(Y)


Метод расчета однозвенных полнодоступных коммутационных схем при обслуживании примитивного потока вызовов в системе с потерями. Первая формула Энгсета - Фрайя

Задание 6

1. Используя таблицы (приложение 2), рассчитать для заданных значений v и а при n = 20 вероятности Рt, Рв, Рн, сравнить их по величине. Для расчета значения v и а взять из задания 1. Если а > 0,5, то принять а = а/2.

2. Построить зависимость числа линий v от интенсивности нагрузки при фиксированном значении Рв = 0,0NN при n = 10, 30, 60. На этом же рисунке построить зависимость v = f(Y) для обслуживания простейшего потока вызовов. Результаты представить в виде таблицы. Объяснить полученные зависимости.

Решение

1. Рассчитаем вероятности Рt, Рв, Рн по формулам:

;

;

,

где а = 0,5 – интенсивность нагрузки от одного источника;

v = 9 – число линий в пучке;

n = 20 – число источников нагрузки, из условия задания.

;

;

;

По результатам расчета видно, что Рt> Рв> Рн.

2. Построим зависимость числа линий v от интенсивности нагрузки при фиксированном значении Рв = 0,0NN = 0,008 при n = 10, 30, 60. На этом же рисунке построим зависимость v = f(Y) для обслуживания простейшего потока вызовов.

Результаты расчета при Рв = 0,007 приведены в таб.7

Таблица 7

График зависимости числа линий v от интенсивности нагрузки рис.10

№п.п. a Y = a*n v
n = 5 0,5 2,5 5
n = 10 0,5 5 9
n = 20 0,5 10 15
n = 30 0,5 15 22
n = 40 0,5 20 27
n = 50 0,5 25 33
n = 70 0,5 35 44
n = 100 0,5 45 61
n = ∞ 0,5 50 65

Рисунок 10 График зависимости числа линий v от интенсивности нагрузки

Характер зависимости величины поступающей нагрузки Y от емкости пучка линий, который обслуживает вызовы примитивного потока, поступающие от фиксированного числа источников n такой же, как и при обслуживании вызовов простейшего потока. Однако на пропускную способность пучка влияет число источников вызовов n: в области малых потерь с уменьшением n увеличивается пропускная способность пучка. Из выше приведенного графика видно, что при данном качестве обслуживания поступающая на v линий пучка нагрузка создаваемого вызовами примитивного потока от любого числа источников имеет большую величину по сравнению с нагрузкой Y, создаваемой вызовами простейшего потока.

Таким образом, с точки зрения величины обслуживаемой нагрузки примитивный поток всегда «лучше» простейшего потока вызовов.


БИБЛИОГРАФИЧЕСКИЙ СПИСОК

1. Корнышев Ю. Н., Пшеничников А. П., Харкевич А. Д. Теория телетрафика - М.: Радиои связь, 1996. - 272 с.

2. Лившиц B.C., Пшеничников А.П., Харкевич А.Д. Теория телетрафика - М.: Связь, 1979. - 224 с.

3. Шнепс М.А. Системы распределения информации. Методы расчета. М.: Связь, 1979. -342 с.

4. Корнышев Ю.Н., Фань Г.Л. Теория распределения информации. М.: Радио и связь, 1985.-184 с.

5. Башарин Г.Л. Таблицы вероятностей и средних, квадратичных отклонений потерь на полнодоступном пучке линий. - М.: АН СССР 1962. -128 с.

6. Учебное пособие по курсовому проектировании координатных АТС / Р.А. Аваков, М.А. Подвида, В.Е. Родзянко- Л., 1961. - 102 с.

7. Лившиц B.C., Фидлин Л.В. Системы массового обслуживания с конечным числом источников. - М.: Связь, 1968. - 167 с.

8. Ионин Г.Л., Седол Я.Я. Таблицы вероятностных характеристик полнодоступного пучка при повторных вызовах. - М.: Наука, 1970. -155 с.

9. Захаров Т.П., Варакосин Н.П. Расчет количества каналов связи при обслуживании с ожиданием. - М.: Связь, 1967. - 194 с.

10. Проектирование координатных автоматических телефонных станций типа АТСК /М.Ф. Когш, З.С. Коханова, О.И. Панкратова и др. / ВЗЭЙС. - М.: 1969. -143 с.

11. Блинова Р.Д., Курносова Н.И. Методические указания для выполнения курсовой работы по курсу "Теория распределения информации". - М.: МТУСИ,'1994. - 26 с.