Смекни!
smekni.com

Розробка двохсмугової активної акустичної системи з сабвуфером (стр. 3 из 12)

Скориставшись фільтром прототипом [1] передавальну функцію запишемо так

, (2.3.2)

S – оператор Лапласа по частоті зрізу ωзр для ВЧ-фільтра запишеться так:

S = ωзр/р. (2.3.3)

Підставивши вираз (2.3.3) у формулу (2.3.2) отримаємо:

. (2.3.4)

Прирівнявши вирази К(р) і Н(р) отримаємо наступні рівняння:

. (2.3.5)

Приймемо рівними R1=R2=R=10 кОм. Тоді із рівняння (1.3.5) випливає:

С1=С2=С=

, (2.3.6)

де

= 2πfзр, fзр=1 кГц – задана частота розділу.

Розрахуємо

нФ.

Ємність С приймаємо стандартний номінал 15 нФ.

Для мінімізації по постійному струму опір зворотнього зв’язку приймемо в двічі більшим R:

R3 = 2R = 20 кОм.

Приведемо результати аналізу розрахованої схеми


Для практичної реалізації фільтра необхідно застосувати наступні типи елементів:

С1, С2 К10-17-1б-Н50-0,015 мкФ ОЖО.460.172.ТУ;

R1, R2: C2-23-0,125-10 кОм ±1 % А-В-В-А ОЖО.467.104.ТУ;

R3: C2-23-0,125-20 кОм ±1 % А-В-В-А ОЖО.467.104.ТУ.

С3 К73-17-63 В - 0,03 мкФ ОЖО.461.104.ТУ.

2.4. Розрахунок фільтра низьких частот з регульованою частотою зрізу

Для сабвуфера використаємо фільтр нижніх частот Батерворта другого порядку, який зображений на рис. 2.1 Задача полягає в тому, щоб даний фільтр мав не фіксовану частоту зрізу, а регульовану в певних межах. Вирішити це питання можна наступним чином. Враховуючи те, що частоту зрізу у фільтрі нижніх частот Батерворта задає RC-ланка, яка стоїть на вході операційного підсилювача. Отже, щоб була можливість змінювати частоту зрізу, необхідно зробити змінними R або С елемент. Оскільки змінювати ємність складно технологічно, дорого і мала надійність роботи, тому вибираємо варіант із зміною опору резистора. Така схема матиме наступний вигляд (рис. 2.4.1):


Резистори R1 та R4 необхідні для того, щоб можна було задати мінімальну частоту зрізу, коли змінний резистор буде в крайньому положенні.

Згідно з технічним завданням частота зрізу даного фільтра повинна регулюватись в межах від 100 до 200 Гц.

Проведемо методику розрахунку, описану в розділі 2, із врахуванням наведених вище вимог.

Розрахунок ємності С проведемо за формулою (2.2.3):

С = 1/(2πfзрR).

Задаємось номіналом опору R2 = R3 = R = 10 кОм. Оскільки частота у нас регульована, тому для початку візьмемо середнє значення

С = 1/ (2π·150·10·103) = 100 нФ.

Виберемо номінал ємності С рівним 75 нФ.

Маючи фіксоване значення С за формулою

R = 1/(2πfзрC) (2.4.1)

прослідкуємо, в яких межах повинен змінюватись номінал резистора для забезпечення частоти зрізу від 100 до 200 Гц.

R(fзр=100 Гц) = 1/(2π·100·68·10-9) = 15915 Ом,

R(fзр=200 Гц) = 1/(2π·200·68·10-9) = 10610 Ом.

За результатами розрахунків проведемо вибір номіналів резисторів:

R1=R4=10 кОм,

R2=R3=6,8 кОм.

Оскільки опір зворотнього зв’язку R5 рекомендується приймати в два рази більшим за R, а він складається із двох резисторів: постійного номіналом 10 кОм і змінного – 6,8 кОм, то візьмемо в два рази більший від середнього значення: R5 = 22 кОм.

Провівши комп’ютерний аналіз отримаємо наступні графіки:

Оскільки частота зрізу даного фільтра є регульованою і не має чіткого фіксованого значення, то доцільним є застосування елементів із меншою точністю, собівартість яких є нижчою за високоточні.

Застосуємо наступні типи елементів:

R1, R4 C2-23-0,125-10кОм±5% А-В-В-А ОЖО.467.107.ТУ,

R5C2-23-0,125-22кОм±5% А-В-В-А ОЖО.467.107.ТУ,

R2, R3 CП3-9а-16-68кОм±10% ОЖО.468.112.ТУ,

С1,С2 К73-17-63В-0,1мкФ±10% ОЖО.461.104.ТУ,

С3 К73-17-63В-0,03мкФ±10% ОЖО.461.104.ТУ.

2.5 Розрахунок фазоповертача

Роль фазоінвертора або регулятора фазової затримки використовується у сабвуфері з метою зменшення фазочастотних спотворень, які можуть виникати в ланках звуковідтворювального тракту, узгодження фазочастотних характеристик сабвуфера і основних каналів акустичної системи та для компенсації недоліків фонограм. Як регулятор фазової затримки, використаємо всепропускаючу ланку 1-го порядку , схема якої приведена на рис. 2.5.1.


Коефіціент перетворення напруги такої ланки, який виводиться на підставі схеми ланки при умові, що підсилення операційного підсилювача КUОП = ∞, описується таким математичним виразом:

(2.5.1)

Приймемо R1=R2=R. Вибираємо R1=R2=10кОм.

Тоді
або
. (2.5.2)

Модуль

(2.5.3)

Аргумент

. (2.5.4)

На підставі формули для φКU бачимо, що змінюючи, наприклад R3, можна змінювати (регулювати) значення фази. Отже, замінивши резистор R3 на потенціонометр, отримаємо регулятор фази (регулятор фазової затримки). Для розрахунку граничних значень опору R3 задамося тим, що на частоті зрізу сабвуфера фаза регулятора повинна змінюватися в межах від 100 до 900. Частота зрізу сабвуфера змінюється від 100 до 200 Гц. Вибираємо fзр = 150 Гц. З вищезаписаного виразу для φКU визначаємо R3:

. (2.5.5)

Для розрахунку граничних значень R3 вибираємо С=0,1 мкФ.

Розраховуємо R3

а) при φКU = 100

б) при φКU = 900

Отже, опір R3 повинен змінюватися від 121338 Ом до 10616 Ом.

Для цього складемо ланку з постійного опору R3/ = 10 кОм та потенціонометра R3// = 100 кОм. Схема регулятора фази прийме вигляд (рис. 2.5.2):

Результати моделювання регулятора фази з допомогою системи схемотехнічного проектування MicroCapVI (рис. 2.5.3).


2.6. Вибір операційного підсилювача

В якості операційних підсилювачів, які застосовуються в фільтрах, виберемо LM301A [3]. LM301A – операційний підсилювач загального призначення, який має покращені в порівнянні з іншими загальнодоступними підсилювачами, характеристики. Сучасні методи виробництва дозволили на порядок зменшити вхідні струми, а нова схема подачі зміщення забезпечила зменшення температурного дрейфу вхідного струму.

Даний підсилювач має ряд особливостей, які дозволяють уникати від помилок, від перевантаження, при перевищенні синфазною напругою відсутнє “защолкування”, ОП не входить в самозбудження, а частотна корекція здійснюється всього одним конденсатором 30 пФ.

В схемах з високим вхідним опором LM301A забезпечує більш високу точність обробки сигналів і менший рівень шумів в порівнянні з іншими. Крім того, замінюючи схеми, в яких на вхід звичайного ОП ставиться буферний каскад з узгодженої пари транзисторів 2П308А може забезпечити більш низькі значення зсуву і дрейфу при меншій вартості.

Граничні експлуатаційні та електричні параметри:

Напруга живлення ±15 В;

Розсіювана потужність 500 мВт;

Диференціальна вхідна напруга ±30 В;

Вхідна напруга ±18 В;

Тривалість к.з. виходу не обмежена;

Діапазон робочих температур від 0 до 700С;

Вхідна напруга зсуву 2 мВ;

Вхідний струм зсуву 3 мА;

Вхідний опір 2 Мом;

Струм споживання 1,8 мА.


3. Характеристика інтегральних підсилювачів

Підсилювачі потужності, які іноді мають назву кінцевих підсилювачів, призначені для збільшення потужності звукових сигналів до такого рівня, щоб вони могли збуджувати електроакустичні перетворювачі – гучномовці, головні телефони та ін. Принцип роботи підсилювачі потужності полягає в тому, що вони перетворюють підведену до них від джерела живлення потужність постійного струму в змінний струм, причому форма сигналу на виході підслювача повністю повторює сигнал на вході. Підсилювач потужності повинні характеризуватись невеликими коефіціентами спотворень і високим ККД (відношення потужностей змінного струму на виході і постійного струму, підведеного від джерела живлення).

Сучасний ринок пропонує цілий набір інтегральних підсилювачів різних класів якості, спеціально призначених для касетних переносних магнітофонів, автомобільної радіоапаратури, телевізійних приймачів, проміжних аудіопідсилювачів. Потужність інтегральних підсилювачів зазвичай не перевищує 25 Вт. І тільки провідні фірми виробники, такі як Philips, SGS-Thomson, Motorola, Mitsubishi-Electric можуть запропонувати монолітні інтегральні підсилювачі потужністю до 70 Вт.

Інтегральні підсилювачі дуже компактні, не потребують зовнішніх детелей, часто мають систему захисту від коротких замикань і перевантажень по струму навантаження, термозахист і т.п., що забезпечує безвідмовну роботу при експлуатації.