Смекни!
smekni.com

Разработка системы регулирования температуры смазочного масла турбины (стр. 2 из 9)

Рекомендуемая разность давлений между водой и маслом должна быть минимальной.

Система смазки турбины снабжена шестью реле падения давления масла в системе смазки до II предела. Два РПДС используются в схеме защиты, один для включения ЭД аварийного маслонасоса и один для отключения ВПУ.

В защите участвуют одно РПДС с уставкой I предел и два РПДС с уставкой II предел. Срабатывание защиты по давлению масла происходит при условии срабатывания не менее двух РПДС (схема «2 из 3-х).

РПДС, участвующие в схеме защиты, объединены в одну группу, остальные во вторую. Каждая группа имеет самостоятельный подвод напорного масла и вентиль для снижения давления масла в РПДС при испытании.

Маслопроводы турбины снабжаются арматурой, необходимой для нормального её обслуживания, на трубопроводах слива из каждого подшипника имеется смотровое окно.

Основные технические данные МП-165-150-I

Расход масла 165 м3

Расход воды 150 м3

Поверхность охлаждения 225 м2

Число ходов масла 4

Число ходов воды 2

Начальная температура масла 550С

Конечная температура масла 440С

Максимальная температура масла на входе 650С

Начальная температура воды 330С

Конечная температура воды 390С

Максимальная температура воды на входе 370С

Скорость масла (между ребрами труб) 0,33м/с

Скорость воды (в трубах) 2,06м/с

Гидравлическое сопротивление:

- по маслу 20кПа

- по воде 20,1кПа

Максимальное рабочее давление:

- масла 0,5Мпа

- воды 0,5МПа

Функциональная схема системы регулирования температуры смазочного масла приведена на рис. 9. Она содержит два маслоохладителя параллельно подключенных к охлаждающей воде и охлаждаемому маслу. Охлажденное до нужной температуры масло подается в общий трубопровод, где происходит измерение его температуры с помощью термометра сопротивления. ТС. Измерительный сигнал от термометра сопротивлений поступает в регулирующий контроллер, где происходит его сравнение с заданной уставкой. При отклонении температуры масла от заданной контроллер вырабатывает сигнал управления, поступающий на исполнительный механизм М типа МЭО. Исполнительный механизм воздействует не задвижку изменяя расход охлаждающей воды, обеспечивая тем самым стабилизацию температуры масла.


Рис. 1.1. Функциональная схема регулирования температуры масла.

2. Характеристики временных трендов и их оценивание

Внешние воздействия на объект управления могут быть полезными (управляющими сигналами u) и помехами (возмущающими воздействиями f). Управляющие сигналы, вырабатываемые устройством управления, являются полностью наблюдаемыми. Возмущающие воздействия, в отличие от них, как правило, ненаблюдаемые и случайные сигналы. В результате выходные переменные объекта y(t) определяются не только входными сигналами x(t), но и ненаблюдаемыми и неуправляемыми воздействиями (помехами), что вызывает неконтролируемые отклонения выходных переменных от заданных значений. При повторения процессов управления, происходящих в системе, выходные переменные могут иметь различные значения при одних и тех же значениях времени отсчитываемых от начала процесса. Выходная величина объекта при каждом повторном цикле управления, в этом случае, представляет собой реализацию одного и того же случайного процесса управления.

Таким образом, под действием ненаблюдаемых, неуправляемых и случайных внешних воздействий наблюдаемые переменные объекта также становятся случайными сигналами, являющимися реализациями случайного процесса управления.Для количественной оценки и сравнения различных случайных сигналов используют различные характеристики этих сигналов, представляющие собой абстрактные математические понятия, которые существуют объективно, но не могут быть измерены или определены в строгом смысле слова.

К таким характеристикам относятся

1. Функция распределения вероятностей случайного процесса, или интегральная функция распределения. F(y,t), Функция распределения вероятностей, это вероятность того, что случайный процесс x(t) в момент времени t принимает значения меньше у


. (2.1)

2. Плотность вероятностей, или дифференциальное распределение (распределение) w(x,t).

, (2.2)

откуда

. (2.3)

3. Математическое ожидание случайного процесса

,

. (2.4)

4. Дисперсия случайного процесса

, (2.5)

или

. (2.6)

5. Корреляционная (автокорреляционная) функция Rxx(t1,t2) . Корреляционная функция это математическое ожидание произведений двух значений одного и того же сигнала, сдвинутых по времени.

. (2.7)

6. Взаимная корреляционная функция Rxy(t1,t2). Взаимная корреляционная функция это математическое ожидание произведений двух сигналов один из которых сдвинут относительно другого по времени.

. (2.8)

Точное определение этих характеристик невозможно, так как неизвестен вид закона распределения и конечно число реализаций случайного процесса. Поэтому в реальных условиях эти характеристики вычисляют приблизительно, оценивая их с какой-то погрешностью.

Оценка характеристик случайных процессов проводится на основе роинятия гипотез о стационарноси и эргодичности случайного процесса.

Случайный процесс называют стационарным , если характеризующая его функция распределения не зависит от времени. Отсюда следует, что от времени не будут зависеть и все характеристики случайного процесса. Условие стационарнрсти значительно упрощает вычисление характеристик случайных процессов, так как в выражениях (2.1) - (2.8) исчезает аргумент времени. Однако и вэтом случае для вычисления характеристик необходимо достаточно большое количество независимых реализаций случайного процесса (ансамбль реализаций).

Эргодическая гипотеза позволяет заменить ансамбль реализацй одной реализацией снятой за достаточно продолжительный интервал времени. Согласно эргодической гипотезе средние значения случайного сигнала по множеству и времени совпвдают.

. (2.9)

Тогда для случайных стационарных эргодических процессов оценки их характеристик (2.1) - (2.8) с учетом конечности времени наблюдения Т , записываются в следующем виде.

1. Оценка математического ожидания

. (2.10)

2. Оценка дисперсии

, (2.11)

или

. (2.12)

3. Оценка корреляционнгой функции

, (2.13)

где

- центрированный случайный сигнал.

Корреляционную функцию центрированного сигнала еще называют ковариационной или автоковариационной функцией.

4. Спектральная плотность мощности

, связанная с корреляционной функцией преобразованием Фуре.

. (2.14)

Для получения приемлемой точности оценох характеристик случайных процессов длительность реализации процесса по которой вычисляются оценки должна превышать интервал корреляции. Интервал корреляции

ето значение аргумента корреляционной функции начиная с которого все ее последующие значения не превышают
.

Более подробно о вычислении характеристик случайных процессов и их оценок можно познакомиться в специальной литературе [8, 12, 23, 25, 27, 31, 32, 38, 49, 54, 59, 63, 77, 99].

На рис.2.1- 2.4 приведены статистические характеристики временных трендов системы.

Рис. 2.1. Временные тренды входного и выходного сигналов


Рис. 2.2. Корреляционные функции входного и выходного сигналов.

Рис. 2.3. Спектральные плотности входного и выходного сигналов.

Рис. 2.4. Гистограммы входного и выходного сигналов.


3. Идентификация объекта управления по временным трендам

3.1 Основные понятия теории идентификации

Идентификация (отождествление) в технике связана с процессом построения модели исследуемого объекта. В дальнейшем под идентификацией понимается процесс построения математической модели технического устройства (объекта) по его измеряемым входным и выходным сигналам. При этом под объектом можно понимать любые материальные (физические процессы, технические объекты) и нематериальные (знаковые) элементы и системы Класс рассматриваемых моделей охватывает статические и динамические модели, описываемые соответственно алгебраическими и обыкновенными дифференциальными уравнениями.