RH, CH- эквивалентная нагрузка.
Статический режим работы характеризуется отсутствием на входе усилителя гармонического сигнала (
Рис.6.11. Эквивалентная схема усилителя в статическом режиме
Выбранный режим работы обеспечивают включенные в схему резисторы, для правильного выбора которых необходимо знать цепи протекания постоянного тока в схеме.
Цепь тока базы: + ЕК®RФ®RБ1® база-эмиттер ® - ЕК® + ЕК.
Цепь делителя: + ЕК®RФ®RБ1®RБ2® - ЕК® + ЕК.
Цепь тока коллектора: + ЕК®RФ®RК® коллектор-база-эмиттер ®RЭ®® - ЕК® + ЕК.
В этой схеме базовый вывод транзистора питается от низкоомной цепи RБ1, RБ2 (базовый делитель), которая задает постоянное напряжение на базе
Поскольку величина RФ выбирается таким образом, чтобы URф £ 0,1ЕК, неравенство (6.54) можно переписать в виде
Для стабилизации режима работы необходимо также выбирать сопротивление в коллекторной цепи транзистора по условию
Для кремниевых транзисторов малой и средней мощности, если постоянный ток коллектора колеблется в пределах
При этом постоянный ток эмиттера необходимо выбирать больше амплитуды переменного тока в нагрузке ImН:
Выполнив эти условия, нестабильность напряжения DUБЭ или тока DIБ будет практически не оказывать влияния на основные характеристики усилительного каскада, а коэффициент усиления постоянного напряжения KUП не превысит
При фиксированных значениях ЕК потенциал базы практически не зависит от тока базы IБ, т.е. от свойств конкретного транзистора.
Поэтому схема такого усилительного каскада носит название схемы с фиксированным базовым смещением.
Теперь рассмотрим как работает цепь эмиттерно-базовой стабилизации тока коллектора, которую еще называют температурной стабилизацией режима. Эта цепь состоит из RБ1, RБ2, RЭ.
Допустим, что температура увеличилась. Это приведет к увеличению тока коллектора, тогда
IКÞIЭÞ (URэ = RЭIЭ) Þ (UБЭ = URб2 - URэ) ¯ÞIБ¯ÞIК¯ÞÞIК»const.
Так как сопротивления базового делителя RБ1, RБ2 от температуры не зависят, то ток делителя IД = const, следовательно, URб2 = const.
Для количественной оценки стабилизации применяют коэффициент нестабильности, который приближенно можно вычислить по формуле:
где
Обычно КН = (1,5 - 6). Для данной схемы он может составить КН = (3 - 6).
Вышеприведенные формулы и рассуждения соответствуют линейному (активному) режиму работы транзистора, поэтому при их практическом применении следует убедиться в том, что транзистор не находится в состоянии насыщения.
При рассмотрении динамического режима полагаем, что статический режим обеспечен, на вход усилительного каскада (Рис.6.10) подано гармоническое напряжение с частотой w:
Считается, что режим работы транзистора - малосигнальный (фактически линейный), т.е. сигнальные значения выходных токов DIВЫХ и напряжений DUВЫХ малы по сравнению с их значениями IВЫХ и UВЫХ в исходной РТ.
При малосигнальном режиме работы транзистора взаимосвязи и взаимозависимости между его токами и напряжениями определяются постоянными коэффициентами, не зависящими от уровня сигналов (малосигнальными параметрами). Основное применение находит система h-параметров:
где IВХ, IВЫХ, UВХ, UВЫХ - комплексные амплитуды сигнальных токов и напряжений.
h11 имеет смысл входного сопротивления база-эмиттер (при коротком замыкании входной цепи), для современных транзисторов составляет около 1 кОм; h12 - коэффициент обратной связи по напряжению (при разомкнутой входной цепи), характеризует внутреннюю связь между выходной и входной цепями транзистора, является безразмерной величиной, очень мал по величине (порядка 10-3); h21 - коэффициент передачи тока базы (при коротком замыкании входной цепи, характеризует усилительную способность усилительного элемента, совпадает с коэффициентом b транзистора, который входит в паспортные данные транзистора и обозначается h21Э), также величина безразмерная; h22 - выходная проводимость транзистора (при разомкнутой входной цепи), зависит от угла наклона выходной характеристики транзистора. Величина, обратная h22, называется выходным сопротивлением транзистора: rВЫХ = 1/h22, типовое значение которого составляет около 10 кОм.
Существенным отличием усилительных приборов от пассивных элементов и цепей является их свойство однонаправленности передачи сигналов, которое может быть охарактеризовано неравенством |h21| >> |h12|.
Входное гармоническое напряжение (Рис.6.10) через CЭ прикладывается к участку база-эмиттер транзистора и вызывает изменения тока базы, который в свою очередь вызывает изменения коллекторного тока. Таким образом в составе коллекторного тока появляется переменная составляющая с частотой входного гармонического воздействия и амплитудой
Рис.6.12. Схема замещения усилителя по переменному току
В этой схеме с целью упрощения не показаны сопротивления базового делителя, фильтра и в цепи эмиттера.
Цепь прохождения переменной составляющей тока коллектора:
Так как сопротивлениями емкостей СЭ, СФ, СР можно пренебречь, то резисторы RК и RН оказываются включенными по переменной составляющей параллельно и на них создается падение напряжения
В свою очередь
Теперь формулу 6.61 можно переписать в следующем виде:
Выходное напряжение оказывается в
раз больше входного. В этом и состоит эффект усиления. Также необходимо подчеркнуть, что выходное напряжение оказывается сдвинуто по фазе относительно входного напряжения на 180°, на что указывает знак "минус" в формулах.
Анализ свойств различных схемных построений осуществляют на основе соотношений и положений теории четырехполюсника и эквивалентных схем каскадов (Рис.6.13).
Рис.6.13. Эквивалентная схема каскада
При этом УЭ рассматривают в виде четырехполюсника, к выходным клеммам которого 2-2` подключена нагрузка RН, а к входным 1-1` - источник сигнала с ЭДС ЕС и сопротивлением ZС, а для анализа используют известные методы расчета электрических цепей.
Принципы приведенных расчётов могут быть распространены и на случаи, когда условия малосигнальности не выполняются (если отклонения DIВЫХ, DUВЫХ превышают 20 - 30% от IВЫХ, UВЫХ в исходной РТ). Необходимо использовать усредненные значения h-параметров, под которыми понимают полусуммы их значений, отвечающих крайним отклонениям выходных токов и напряжений, наблюдаемых в процессе усиления сигналов.