Смекни!
smekni.com

Методи нормування складових інструментальної похибки вимірювань (стр. 4 из 5)

Слід пам‘ятати, що і при такій формі нормування класу точності ЗВТ характеристикою точності вимірювань залишається відносна похибка. Границі допустимої відносної похибки вимірювань у функції вимірюваної величини визначаються за формулою, одержаною з виразу (3.8) з урахуванням рівності (1.2):

. (3.9)

З формули (3.9) виходить, що зменшення розміру вимірюваної величини

призводить до збільшення допустимої відносної похибки вимірювань даним ЗВТ. Зокрема, при
допустима відносна похибка
дорівнює класу точності ЗВТ лише на останній (кінцевій) позначці діапазону вимірювань
. При зменшенні
допустима відносна похибка вимірювань
зростає і при
, тому при виборі ЗВТ для проведення вимірювань необхідно враховувати не тільки їх класи точності, а й співвідношення
. З цієї точки зору рекомендується межу вимірювань вимірювального приладу вибирати такою, щоб його покази знаходились у другій половині і навіть ближче до верхньої межі вибраного діапазону вимірювань.

Зважаючи на залежність відносної похибки вимірювань від значення Х, для ряду ЗВТ обмежують діапазон вимірювань такими значеннями вимірюваної величини Х, при яких допустима відносна похибка вимірювань не перевищує деякого, заздалегідь заданого значення, яке дорівнює, наприклад, 4, 10 або 20%. Поза діапазоном вимірювань, особливо в початковій частині діапазону показів для ЗВТ, в яких він починається з нуля, вимірювання не допустимі, оскільки тут адитивна похибка може бути порівняна з вимірюваним значенням

і навіть перевищувати його.

2. Для ЗВТ, в абсолютній похибці яких переважає мультиплікативна складова, границю допустимої основної похибки виражають у відносній формі, через те, що у цьому випадку вона виявляється практично постійною величиною, не залежною від вимірюваної величини

. Границі допустимої відносної основної похибки ЗВТ установлюються за формулою:

, (3.10)

де

- границя допустимої абсолютної мультиплікативної похибки ЗВТ;

b - додатне безрозмірне число;

- постійна додатна величина, виражена у відсотках; вона вибирається з того самого ряду, що й величина p.

Таким способом нормуються похибки масштабних перетворювачів (подільників напруги, шунтів, вимірювальних трансформаторів струму і напруги та ін). І якщо б співвідношення (3.10) залишалось справедливим для всього діапазону можливих значень вимірюваної величини

- від 0 до
, то такі вимірювальні перетворювачі були б найбільш досконалими, тому що вони мали б широкий робочий діапазон, зокрема, забезпечували б з тією самою похибкою вимірювання необмежено малого значення Х. Проте реально таких перетворювачів не існує, оскільки поки що неможливо створити перетворювачі, в яких повністю вилучена адитивна похибка в широкому діапазоні значень вимірюваної величини. Тому для реальних ЗВТ завжди вказується діапазон вимірювань ЗВТ, в якому оцінка (3.10) справедлива. Поза цим діапазоном вплив адитивної складової похибки ЗВТ зростає настільки, що нею знехтувати не можна і, як наслідок, не можна використати допустиму відносну похибку (3.10) як норму основної похибки ЗВТ.

3. Для ЗВТ, адитивна і мультиплікативна складові абсолютної похибки яких сумірні, тобто жодною з них знехтувати не можна, нормуються або границі допустимої абсолютної основної похибки, або границі допустимої відносної основної похибки. У цьому разі границі допустимої абсолютної основної похибки визначаються виразом.

.

Підставляючи це співвідношення в рівність (2.5), одержимо двочленну формулу для нормування границь допустимої відносної основної похибки, вираженої у відсотках:

(3.11)

де

- адитивна і мультиплікативна складові відносної основної похибки відповідно.

Таким чином, особливість класифікації складових похибки ЗВТ полягає в тому, що при переході від абсолютної похибки до відносної форми її відображення адитивна і мультиплікативна складові похибки міняються місцями: відносне значення абсолютної адитивної похибки є мультиплікативною похибкою, а відносне значення абсолютної мультиплікативної похибки - адитивною похибкою.

Вираз (3.11) звичайно представляють в іншій формі, яку одержують так. Нехай

, де
- модуль більшої з меж вимірювань. Додамо до правої частини виразу (3.11) і віднімемо від неї величину d. Тоді одержимо

У цю рівність уведемо позначення

і остаточно маємо

(3.12)

деc, d - постійні додатні величини, виражені у відсотках; вибираються з того самого ряду, що й величина p. Співвідношення між числами c і d установлюються стандартами на конкретні ЗВТ, причому звичайно

Звернемо увагу на те, що складові частини формули (3.12) формально схожі на адитивну і мультиплікативну складові похибки ЗВТ, але за своєю суттю вони не є такими, і тому використовувати ці терміни до даної формули не можна. Аналіз двочленної формули (3.12) показує, що границі допустимої відносної основної похибки при наявності адитивної і мультиплікативної складових звужуються із зростанням вимірюваної величини

, і при
вони набирають мінімального значення, яке дорівнює
(рис.3.8).

Рис.1. Графік допустимої відносної похибки ЗВТ при нормуванні за двочленною формулою.

Можливе також нормування зведеної похибки за двочленною формулою, якщо в знаменник формули (3.11) замість

підставити
.

4. В окремих випадках границі допустимих абсолютної і відносної основної похибок ЗВТ установлюються за більш складними, спеціальними формулами нормування, а також у вигляді графіка або таблиці.

Обумовлено це тим, що похибки ряду ЗВТ не можуть бути нормовані за описаними вище способами, оскільки мають більш складний вигляд смуги похибок у порівнянні з розглянутими варіантами. Як приклад можна навести цифрові частотоміри, похибка яких залежить від часу вимірювання, параметрів вхідного сигналу і характеристик завад. Нормування похибок подібних ЗВТ здійснюється за формулами, які мають дві і більше складових, причому кількість складових і їх суть можуть бути різними як для окремих типів ЗВТ, так і для різних режимів роботи того самого засобу.

Нормування границь допустимих додаткових похибок ЗВТ здійснюється за однією з чотирьох форм:

- у вигляді постійного значення додаткової похибки від даної впливної величини для всієї робочої області або декількох постійних значень по інтервалах робочої області цієї впливної величини;

- указанням відношення границі допустимої додаткової похибки, яка відповідає заданому інтервалу впливної величини, до цього інтервалу;

- у вигляді залежності границі допустимої додаткової похибки від впливної величини, яку називають граничною функцією впливу;

- у вигляді функціональної залежності границь допустимих відхилень від номінальної функції впливу.

Перші дві форми нормування додаткових похибок не дозволяють визначити їх дійсні значення для будь-якого значення впливних величин і забезпечують можливість їх оцінки тільки "зверху". Це є певним недоліком указаних форм нормування. Цього недоліку можна уникнути, якщо нормування додаткових похибок здійснювати шляхом задання функції впливу (третя і четверта форми). За їх допомогою можуть бути визначені дійсні значення додаткових похибок для будь-яких конкретних значень впливних величин, що відповідають умовам виконання вимірювань. Проте задання функції впливу пов‘язано з великими труднощами, і тому в основному використовуються перші дві форми нормування додаткових похибок.