Науково обґрунтований метод технічного контролю розгерметизації барабана сепаратора, при якому активна потужність, споживана електродвигуном сепаратора, перевищує технологічно припустимий рівень. Запропонований алгоритм виявлення розгерметизації барабана сепаратора:
(9)де
- напруга сигналізації; - верхнє припустиме значення сигналу активної потужності.Для контролю затирання барабана сепаратора через потрапляння побічних предметів або через відхилення від осі запропонований метод технічного контролю за появою в спектральній щільності центрованого випадкового процесу зміни у часі сигналу активної потужності максимуму на частоті обертання барабана сепаратора
. Система контролю містить смуговий фільтр оборотної частоти . Поява сигналу активної потужності електродвигуна сепаратора на частоті свідчить про технічну несправність магнітного сепаратора, пов'язану із затиранням барабана. Типові спектральні щільності технічно справного магнітного сепаратора наведені на рис.5, а несправного - на Рис.6.Рис. 5. Типова спектральна щільність активної потужності технічно справного магнітного сепаратора, де: fП - частота біжучого електромагнітного поля.
Рис.6. Типова спектральна щільність активної потужності технічно несправного магнітного сепаратора, де:
- частота обертання барабана сепаратора; fП - частота біжучого електромагнітного поля.Розроблений метод автоматичного управління кількістю паралельно працюючих магнітних сепараторів, що утворюють фронт магнітної сепарації з урахуванням параметрів законів розподілу сигналів активної потужності.
Обґрунтовані оптимальні границі переключення кількості сепараторів, виходячи з мінімізації ризику прийняття рішення відповідно до величини споживаної ними активної потужності. Наприклад, якщо максимальна кількість працюючих сепараторів дорівнює трьом при постійно включеному одному сепараторі, оптимальна границя переключення
, (10)де d - середньоквадратичне відхилення сигналу активної потужності;
і - математичні очікування сигналів активної потужності відповідно при двох і трьох включених сепараторах; і - відповідно ймовірності роботи двох і трьох працюючих сепараторів; і - відповідно вартість втрат від помилкового включення та відключення сепаратора.Кількість паралельно працюючих у стадії збагачення магнітних сепараторів автоматично змінюють пропорційно до активної потужності, споживаної електродвигунами сепараторів з мережі, обумовленої продуктивністю сепараторів за магнітним продуктом.
Розроблений метод технологічного контролю комплексу магнітної сепарації з перечищенням промпродукту. Функціональна схема системи технологічного контролю, а також її статичні характеристики, наведені на рис.7,8.
Рис.7. Функціональна схема системи автоматичної оптимізації, де: 1, 2 - магнітні сепаратори; 3, 4 - електродвигуни; 5, 6 - вимірювальні перетворювачі активної потужності; 7, 8 - суматори; 9 - релейний блок; 10 - регулятор густини зливу; 11 - клапан витрати води; 12 - густиномір; 13 - класифікатор; BK - витрата води у класифікатор;
- продуктивність твердої фази пульпи класифікатора; ±∆g - сигнал зміни густини зливу класифікатора; - продуктивність за магнітним продуктом сепараторів першого прийому; P1, P2 - вихідні токові сигнали вимірювальних перетворювачів активної потужності; C - постійний зсув; - завдання регулятору густини зливу.Рис.8. Статичні характеристики системи, де: g - густина зливу класифікатора; g0 - оптимальна густина зливу; gA - квазіоптимальна густина зливу класифікатора у робочій точці А;
і - статичні характеристики активної потужності, споживаної електродвигунами сепараторів першого і другого прийому; - зсунута статична характеристика; і - оптимальні значення сигналів активної потужності; C - постійний зсув; d - помилка системи.Метод працює на диференціальному принципі екстремального регулювання.
У четвертомурозділі на базі теоретичних і практичних результатів, що отримані в попередніх розділах, розроблена й досліджена безпошукова диференціальна система автоматичного контролю й оптимізації найбільш поширеного технологічного комплексу магнітної сепарації з паралельно працюючими магнітними сепараторами.
На рис.9 подана функціональна схема системи, а на рис.10 - її статичні характеристики.
Рис. 9. Функціональна схема системи автоматичної оптимізації, де: К - класифікатор; ПД - пульподільник; 1С, 2С, 3С - магнітні сепаратори; 1П, 2П, 3П - перетворювачі активної потужності; R - регулятор; B1, B2, B3 - витрати додаткової води в сепаратори; Вк - витрата додаткової води в класифікатор; Р1, Р2, Р3 - сигнали активної потужності приводних двигунів сепараторів.
Рис. 10. Статичні характеристики системи, де: В0 - оптимальне значення об'ємної витрати води на вході одного сепаратора;
- збільшення додаткової води у ванну сепаратора; Р1, Р2, Р3 - сигнали активної потужності приводних двигунів сепараторів.Сигнали P1 і P2 включені назустріч один одному. Різниця цих сигналів
надходить на вхід регулятора R, що через серводвигун управляє клапаном витрати води в класифікатор.Зсув статичних характеристик магнітних сепараторів формує управляючий сигнал U, знак якого визначає відхилення режиму роботи комплексу магнітної сепарації від заданого режиму, що відповідає точці A на рис.10:
(11)де K3 - коефіцієнт передачі регулятора.
Визначені статичні та динамічні характеристики технологічного комплексу магнітної сепарації як об'єкта автоматичного управління.
Нормована автокореляційна функція коливань якості руди:
(12)де
; .Нормована автокореляційна функція коливань якості витрати води:
, (13)де
.Виконані розрахунки параметрів налаштування системи за критерієм мінімуму середньоквадратичної помилки. На рис.11 наведений графік залежності середньоквадратичної помилки регулювання
від коефіцієнта передачі регулятора K, а на рис.12 - графік зміни помилки системи при її східчастій зміні.Розроблені схеми алгоритмів технологічного контролю та автоматичної оптимізації технологічного комплексу магнітної сепарації. Запропонована технічна реалізація системи на основі використання промислових комп'ютерних робочих станцій.
Рис. 11. Графік залежності середньоквадратичної помилки від коефіцієнта підсилення.