Для забезпечення роботи віконної функції по всьому інтервалі сигналу задавалися початкові й кінцеві умови обчислень (продовження на M крапок обох кінців сигналу нульовими значеннями).
Як видно за результатами обчислень, віконне перетворення дозволяє досить точно локалізувати інформативні особливості сигналу за часом і по частоті[13].
Використання дискретного вейвлет-перетворення дозволяє провести доведення багатьох положень теорії вейвлетів, пов'язаних з повнотою й ортогональністю базису, збіжністю рядів і т.д. Доказовість цих положень необхідна, наприклад, при стиску інформації або в завданнях чисельного моделювання, тобто у випадках, коли важливо провести розклад з мінімальним числом незалежних коефіцієнтів вейвлет-перетворення й мати точну формулу зворотного перетворення. Використання безперервного вейвлет-перетворення для аналізу сигналів більш зручно, а його деяка надмірність, пов'язана з безперервною зміною масштабного коефіцієнта а й параметра зрушення b, стає тут позитивною якістю, тому що дозволяє більш повно й чітко представити й проаналізувати інформацію, що міститься у вихідних даних. Зокрема, стає можливим проведення локалізації й класифікації особливих крапок і обчислення різних фрактальних характеристик сигналу, а також виконання частотно-часового аналізу нестаціонарних сигналів. Наприклад, у таких сигналів, як мовний сигнал, спектр радикально міняється в часі, а характер цих змін являє собою дуже важливу інформацію при розпізнаванні мови.
На основі вейвлетів створюються й такі елементи, як високочастотний і низькочастотний вейвлет-фільтри, за допомогою яких відбувається фільтрація сигналу по алгоритму Малла (рисунок 4.6). При цьому для збільшення дозволу вейвлет-фільтрів по частоті використається простий і досить ефективний прийом. Опишемо його для ортогонального випадку[2].
Рисунок 4.6 – Розклад по вейвлет-пакетам.
Сімейства вейвлетів у тимчасовій або частотній області використаються для представлення сигналів і функцій у вигляді суперпозицій вейвлетів на різних масштабних рівнях декомпозиції (розкладання) сигналів. Перші теоретичні роботи з основ вейвлетних перетворень були виконані в 90-х роках минулого століття Мейером (MayerY.), Добеши (DaubechiesI.) і Маллатом (MallatS.A.). Математичний апарат вейвлет-перетворення перебуває в стадії активної розробки, однак спеціальні пакети розширень по вейвлетам уже існують в основних системах комп'ютерної математики (Matlab, Mathematica, Mathcad, і ін.).
У цей час вейвлет-перетворення й вейвлетний аналіз використовуються в багатьох галузях науки й техніки для всяких завдань: для розпізнавання образів, для чисельного моделювання динаміки складних нелінійних процесів, для аналізу апаратної інформації й зображень у медицині, космічній техніці, астрономії, геофізиці, для ефективного стиску сигналів і передачі інформації з каналів з обмеженою пропускною здатністю й т.д.
4.5 Розклад по піддіапазонам
Іноді буває корисно розкласти сигнал на компоненти, енергія яких зосереджена в різних частотних піддіпазонах (тобто істотно відмінна від нуля на різних під відрізках відрізка
), і кодувати їх з різним ступенем детальності (наприклад, залежно від чутливості людського вуха до звуків різної частоти). Розподіл «енергії» сигналу по частотах характеризує , Задовго до створення вейвлет-аналіза для цього використалася схема, що ми зараз опишемо.Ми хочемо знайти два фільтри,
(придушуючий високі частоти) і ( придушуючий низькі частоти), які дозволяли б розкласти сигнал на два компоненти, і , удвічі їх прорідити (половина значень стає зайвою – адже частотний діапазон скоротився вдвічі!), а потім, за допомогою транспонованих фільтрів, точно відновитиза цими даними вихідний сигнал (цю операцію можна застосовувати рекурсивно). Умови на шукані фільтри зручно записати в термінах z-перетворення.Нехай
– z-перетворення однієї з компонентів. Перед кодуванням вона проріджується вдвічі, а перед відновленням вихідного сигналу доводить до вихідної довжини вставкою нулів між сусідніми значеннями. При цьому z-перетворення з перетворюється в . Підставивши дане рівняння для кожного з фільтрів, одержимо z-перетворення компонентів перед відновленням (4.5.10)z-перетворення транспонованих фільтрів мають вигляд
і . Сигнал відновиться з їхньою допомогою точно, якщо: .Одержуємо умови точного відновлення :
(4.5.11)У матричній формі вони записуються так:
,де
(4.5.12)Підставивши
, одержимо умови на ДПФ шуканих фільтрів: (4.5.13)Допустимо, що ми знайшли
такий, що (4.5.14)Тоді, підставивши
(4.5.15)ми бачимо, що умова виконується. Завдання звелося до знаходження тригонометричного багаточлена
, що задовольняє умові. На методах побудови таких багаточленів ми зупинимося в наступній лекції. Фільтри і , що задовольняють умові, називаються квадратурними дзеркальними фільтрами. На рисунку 4.7 (a) і (б), показані ДПФ такої пари фільтрів і , а також вихідний сигнал до й після фільтрації (без проріджування)[12].Рисунок 4.7 (б) – Сигнал після фільтрації
5. ЗАСТОСУВАННЯ ВЕЙВЛЕТ-АНАЛІЗА ДЛЯ ОБРОБКИ СИГНАЛІВ
5.1 Огляд існуючих методів
5.1.1 Пірамідне представлення сигналів
На рисунку 5.1 схематично зображене пірамідне представлення одномірного сигналу. Сигналові ставляться у відповідність дві піраміди: піраміда гауссіанів (ПГ) і піраміда лапласіанів (ПЛ). Ці назви відбивають аналогію з популярними в графіку операціями згладжування (згортки з колоколообразним фільтром) і виділення перепадів (обчислення “дискретного оператора Лапласа”). Можна вважати цю конструкцію спрощеним варіантом попередньої.
В основі ПГзнаходиться вихідний сигнал. Наступний поверх ПГ – вихідний сигнал, профільтрований низькочастотним фільтром
і проріджений після цього вдвічі – передбачається, що фільтр h «убиває» верхню половину частотного діапазону, тому густоту вибірки можна відповідно зменшити. До цього поверху застосовується та ж операція, і так далі. У випадку кінцевих сигналів кожний наступний поверх удвічі коротше попереднього.Рисунок 5.1 – Пірамідне представлення сигналів
Поверхи ПЛ – різниці між послідовними поверхами ПГ. Вони обчислюються так. Нехай, наприклад,
і – перший і другий поверхи ПГ, – перший поверх ПЛ, що ми хочемо обчислити. Для цього спочатку вирівнюються довжини поверхів: