Как правило, код аутентификации является значением некоторой (зависящей от секретного ключа) криптографической хеш-функции от данного сообщения: hk(M) = S К кодам аутентификации предъявляются определенные требования. К ним относятся:
— невозможность вычисления значения hk(M) = S для заданного сообщения М без знания ключа k,
— невозможность подбора для заданного сообщения М с известным значением hk(M)=S другого сообщения М1с известным значением hk(М1) = S1, без знания ключа k.
Первое требование направлено против создания поддельных (сфабрикованных) сообщений при атаках типа имитация; второе — против модификации передаваемых сообщений при атаках типа подмена.
Аутентификация — установление подлинности. В общем случае этот термин может относиться ко всем аспектам информационного взаимодействия: сеансу связи, сторонам, передаваемым сообщениям и т. д.
Установление подлинности (то есть проверка и подтверждение) всех аспектов информационного взаимодействия является важной составной частью проблемы обеспечения достоверности получаемой информации. Особенно остро эта проблема стоит в случае не доверяющих друг другу сторон, когда источником угроз может служить не только третья сторона (противник), но и сторона, с которой осуществляется взаимодействие.
Применительно к сеансу связи аутентификация означает проверку: целостности соединения, невозможности повторной передачи данных противником и своевременности передачи данных. Для этого, как правило, используют дополнительные параметры, позволяющие "сцепить" передаваемые данные в легко проверяемую последовательность. Это достигается, например, путем вставки в сообщения некоторых специальных чисел или меток времени. Они позволяют предотвратить попытки повторной передачи, изменения порядка следования или обратной отсылки части переданных сообщений. При этом такие вставки в передаваемом сообщении необходимо защищать (например, с помощью шифрования) от возможных подделок и искажений.
Применительно к сторонам взаимодействия аутентификация означает проверку одной из сторон того, что взаимодействующая с ней сторона — именно та, за которую она себя выдает. Часто аутентификацию сторон называют также идентификацией.
Основным средством для проведения идентификации являются протоколы идентификации, позволяющие осуществлять идентификацию (и аутентификацию) каждой из участвующих во взаимодействии и не доверяющих друг другу сторон. Различают протоколы односторонней и взаимной идентификации.
Протокол — это распределенный алгоритм, определяющий последовательность действий каждой из сторон. В процессе выполнения протокола идентификации каждая из сторон не передает никакой информации о своем секретном ключе, а хранит его у себя и использует для формирования ответных сообщений на запросы, поступающие при выполнении протокола.
Наконец, применительно к самой информации аутентификация означает проверку того, что информация, передаваемая по каналу, является подлинной по содержанию, источнику, времени создания, времени пересылки и т. д.
Проверка подлинности содержания информации сводится, по сути, к проверке ее неизменности (с момента создания) в процессе передачи или хранения, то есть проверке целостности.
Аутентификация источника данных означает подтверждение того, что исходный документ был создан именно заявленным источником.
Заметим, что если стороны доверяют друг другу и обладают общим секретным ключом, то аутентификацию сторон можно обеспечить применением кода аутентификации. Действительно, каждое успешно декодированное получателем сообщение может быть создано только отправителем, так как только он знает их общий секретный ключ. Для не доверяющих друг другу сторон решение подобных задач с использованием общего секретного ключа становится невозможным. Поэтому при аутентификации источника данных нужен механизм цифровой подписи, который будет рассмотрен ниже.
В целом, аутентификация источника данных выполняет ту же роль, что и протокол идентификации. Отличие заключается только в том, что в первом случае имеется некоторая передаваемая информация, авторство которой требуется установить, а во втором требуется просто установить сторону, с шторой осуществляется взаимодействие.
Математические модели открытого текста
Потребность в математических моделях открытого текста продиктована, прежде всего, следующими соображениями. Во-первых, даже при отсутствии ограничений на временные и материальные затраты по выявлению закономерностей, имеющих место в открытых текстах, нельзя гарантировать того, что такие свойства указаны с достаточной полнотой. Например, хорошо известно, что частотные свойства текстов в значительной степени зависят от их характера. Поэтому при математических исследованиях свойств шифров прибегают к упрощающему моделированию, в частности, реальный открытый текст заменяется его моделью, отражающей наиболее важные его свойства. Во-вторых, при автоматизации методов криптоанализа, связанных с перебором ключей, требуется "научить" ЭВМ отличать открытый текст от случайной последовательности знаков. Ясно, что соответствующий критерий может выявить лишь адекватность последовательности знаков некоторой модели открытого текста.
Один из естественных подходов к моделированию открытых текстов связан с учетом их частотных характеристик, приближения для которых можно вычислить с нужной точностью, исследуя тексты достаточной длины. Основанием для такого подхода является устойчивость частот к -грамм или целых словоформ реальных языков человеческого общения (то есть отдельных букв, слогов, слов и некоторых словосочетаний). Основанием для построения модели может служить также и теоретико-информационный подход, развитый в работах К. Шеннона.
Учет частот k-грамм приводит к следующей модели открытого текста. Пусть Р(k)(А) представляет собой массив, состоящий из приближений для вероятностей р(b1,b2,...,bk) появления k-грамм b1bг...bkв открытом тексте, k N,
А = (а1 ,...,ап) — алфавит открытого текста, bi A, i = 1,k.
Тогда источник "открытого текста" генерирует последовательность с1,с2,...,сk,сk+1,... знаков алфавита А, в которой k-грамма с1с2...сkпоявляется с вероятностью р(с1с2...сk) е Р(k)(А), следующая k-грамма с1с2...сk+1появляется с вероятность р(с2с3...сk+1) Р(k)(А) и т. д. Назовем построенную модель открытого текста вероятностной моделью k-го приближения.
Таким образом, простейшая модель открытого текста -вероятностная модель первого приближения – представляет собой последовательность знаков с1,с2,..., в которой каждый знак ci, i = 1,2,..., появляется с вероятностью р(сi) P(1)(A), независимо от других знаков. Будем называть также эту модель позначной моделью открытого текста. В такой модели открытый текст с1с2...с1имеет вероятность
.
В вероятностной модели второго приближения первый знак с1 имеет вероятность р(с1) P(1)(A), а каждый следующий знак сi зависит от предыдущего и появляется с вероятностью
,
где р(сi-1сi) Р(2)(А), р(сi-1) Р(1)(A), i = 2,3,.... Другими словами, модель открытого текста второго приближения представляет собой простую однородную цепь Маркова. В такой модели открытый текст с1с2...сlимеет вероятность
.
Модели открытого текста более высоких приближений учитывают зависимость каждого знака от большего числа предыдущих знаков. Ясно, что чем выше степень приближения, тем более "читаемыми" являются соответствующие модели. Проводились эксперименты по моделированию открытых текстов с помощью ЭВМ.
Отметим, что с более общих позиций открытый текст может рассматриваться как реализация стационарного эргодического случайного процесса с дискретным временем и конечным числом состояний.
Критерии распознавания открытого текста
Заменив реальный открытый текст его моделью, мы можем теперь построить критерий распознавания открытого текста. При этом можно воспользоваться либо стандартными методами различения статистических гипотез, либо наличием в открытых текстах некоторых запретов, таких, например, как биграмма ЪЪ в русском тексте. Проиллюстрируем первый подход при распознавании позначной модели открытого текста.
Итак, согласно нашей договоренности, открытый текст представляет собой реализацию независимых испытаний случайной величины, значениями которой являются буквы алфавита А = {а1,...,ап}, появляющиеся в соответствии с распределением вероятностей Р(1)(А) = (р(а1),...,р(ап)). Требуется определить, является ли случайная последовательность с1с2...сl букв алфавита А открытым текстом или нет.