Однорідна поперечна плоска стінка
На рис.1.2. зображена однорідна плоска стінка товщиною δ. Через неї в поперечному напрямку протікає однорідний тепловий потік Ф у напрямі зменшення температури; при цьому ti - температура лівої поверхні стінки, tj - температура правої поверхні стінки, ti > tj.
Теплове коло є тепловим опором Rij з температурними потенціалами на кінцях ti, tj. Формула (1.6) у даному випадку набуде вигляду:
|
|
а) б)
Рис. 1.2. Однорідна поперечна плоска стінка (а) та її теплова модель (б)
Остаточно запишемо її так:
Отже, тепловий опір пропорційний товщині стінки δ і обернено пропорційний її площі А та теплопровідності матеріалу λ.
Циліндрична стінка
Нехай однорідний тепловий потік Ф напрямлений у напрямку зовнішньої стінки (рис.1.3).
|
Рис.1.3. Циліндрична стінка
Хоча теплове коло, як і в попередньому випадку, складається з одного теплового елемента Rij, розрахункова формула буде іншою. В даному випадку площа поверхні, через яку проходить тепловий потік Ф, є функцією
Остаточно запишемо її так:
Поперечна багатошарова стінка
На рис.1.4 зображена поперечна стінка, що складається з трьох шарів. Незмінний однорідний тепловий потік Ф послідовно проходить через кожний шар як через однорідну поперечну стінку площею А.
|
а) б)
Рис.1.4. Поперечна багатошарова стінка площею А (а) та її теплова модель (б)
Теплове коло є послідовним з’єднанням теплових опорів кожного шару. Тепловий опір всієї стінки визначається як сума теплових опорів елементів. У загальному випадку розрахункова формула набуває вигляду:
Поздовжня багатошарова стінка
Всі шари стінки мають однакову товщину δ (рис.1.5).
|
|
а) б)
Рис.1.5. Поздовжня багатошарова стінка (а) та її теплова модель (б)
Тепловий потік Ф розподіляється між кожним шаром стінки площею Аk. Кожний шар має свою теплопровідність матеріалу λk. Через поверхню площею Аk проходить тепловий потік Фk, при цьому
1.4 Теплопровідність вздовж стінок та стержнів
Особливістю стержнів та пластин є одновимірний характер розповсюдження тепла. Тепловий потік у стержні рухається вздовж його осі, а в стінці – вздовж стінки. В поперечному напрямку температурний градієнт набагато менший, ніж уздовж стінки чи стержня. До стержнів можна віднести провідники, електроди термопар, тощо. До пластин можна віднести робочий елемент напівпровідникового випрямляча радіаторного типу, окреме ребро радіатора, шасі, на якому змонтовані деталі, тощо.
На рис.1.6 зображений стержень, вздовж якого рухається тепловий потік Ф
|
Рис.1.6. Тепловий потік стержня
Хоча тепловий потік рухається вздовж стержня, його інтенсивність падає, бо має місце віддача тепла з бокової поверхні стержня в оточуюче середовище. Тому, якщо на початку температура бокової поверхні стержня дорівнювала tm, то в кінці стержня вона падає до значення tk. Якщо L таке, що tk=tC (Фk=0), то для довільного перерізу з координатою х має місце формула:
де А – площа поперечного перерізу;
U – периметр поперечного перерізу;
α - коефіцієнт тепловіддачі бокової поверхні стержня;
λ - теплопровідність матеріалу;
1.5 Способи збільшення теплопровідності
Ефективна робота теплопроводів визначається не тільки їх геометрією, але й властивостями матеріалу. В першу чергу мова піде про теплопровідність λ, яка входить у всі наведені раніше розрахункові формули кондуктивної теплопередачі.
Матеріал зі значенням теплопровідності
Теплопровідність газів лежить у межах:
Теплопровідність рідин лежить в межах
Теплопровідність металів лежить в межах
Значення теплопровідності діелектриків лежить в межах
Особливе місце займають алмази (природні і штучні). Вони мають особливо високу теплопровідність
Для зменшення теплового навантаження елементів електронних приладів потрібно:
· використовувати матеріали з високим значенням λ;
· збільшувати площу контакту елементів теплопроводів;
· зменшувати шляхи теплопотоків.
Для цього потрібно знімати з контактів лаки, фарби, зменшувати шорсткість поверхонь і збільшувати тиск між ними, в якості прокладок використовувати пасти високої провідності, застосовувати шини між елементами і корпусом, замінювати гумові прокладки на свинцеві, застосовувати самонарізні гвинти.
В якості теплопровідних найбільше застосування знайшли такі матеріали:
· мідь і алюміній для зниження контактного опору;
· кадмій і олово для покриття елементів;
· свинець, мідь, алюміній для виготовлення прокладок.
1.6 Передача теплової енергії конвекцією
1.6.1 Конвективна тепловіддача
Мова йде про передачу тепла з поверхні твердого тіла в газ або рідину, які переміщуються відносно поверхні. Цей процес суттєво залежить від стану нагрітого середовища. Конвекція завжди супроводжується теплопровідністю
де q- поверхнева густина теплового потоку;
Якщо швидкість переміщення V газу чи рідини відносно поверхні тіла падає до нуля, то
Процес конвекції формально (математично) зводиться до процесу теплообміну (тіло - рідина). Цей процес називається конвективною тепловіддачею та виражається формулою Ньютона:
де А - площа поверхні тепловіддачі;