Смекни!
smekni.com

Кодирование речи методом RPE/LPC -LTP (стр. 1 из 2)

Кодирование речи методом RPE/LPC -LTP


1. RPE – LTP –кодер на 16 кбит/с

В 1990 г. предполагалось ввести в эксплуатацию Европейскую цифровую подвижную систему радиосвязи, в которой будет использоваться кодирование речевого сигнала со скоростью 16 кбит/с.

Разработка кодера производилась в 7 Европейских странах, а также в США и Канаде.

Были разработаны следующие системы:

- адаптивное дифференцирование ИКМ – ADPCM;

- адаптивное кодирование преобразованием – APC;

- кодирование с линейным предсказанием с возбуждением от остатка RELP–LPC;

- кодирование с линейным предсказанием с возбуждением от регулярных импульсов – RPE-LPC;

- кодирование с линейным предсказанием с многоимпульсным возбуждением – MPE-LPC,

- субполюсное кодирование –SBC –APCM.

В конце разработки были проведены сравнительные испытания всех кодеров. Испытания проводились на 7 языках. В результате испытаний были отобраны два кодера:

- RPE (Regular–PulseExcitation) - линейное предсказание с возбуждением от регулярных импульсов с долговременным предиктором LTP (LongTermPredictor)

- MPE–LTP -линейное предсказание с многоимпульсным возбуждением с долговременным предиктором LTP.

RPE– алгоритм предполагает, что сигнал остатка в линейном предсказании представляется последовательностью прореженных регулярных импульсов, но с большим числом импульсов в кадре, чем в многоимпульсном возбуждении MPE.

RPE кодеры менее сложные, однако качество речи при их использовании недостаточно хорошее из-за наличия в сигнале тонального шума, который получается в речевом сигнале в процессе высокочастотной регенерации.

В противоположность RPE– кодеру, кодер с многоимпульсным возбуждением MPE создает отличное качество речи, но является достаточно сложным.

Компромиссом между этими двумя вариантами является RPE–LTP кодер, т. е. линейное предсказание с возбуждением от регулярных импульсов и с долговременным предиктором - LTP.

В передающей части кодера производится кратковременный LPC анализ, долговременный LTP анализ и кодирование регулярных импульсов RPE – кодером (рисунок 1).

Коэффициенты отражения кратковременного предсказания получают по методу Берга для РФ 8-го порядка.

В кратковременном LPC анализе производится выделение коэффициентов отражения

, преобразование их в коэффициенты логарифма площади
(log-area-ratios), кодирование
и передача их на прием.

Коэффициенты

квантуют следующим образом: при i равном 1 и 2; 3 и 4; 5 и 6; 7 и 8 число бит на коэффициент соответственно равно 6; 5; 4; 2.

Итого, на 8 коэффициентов

отводится 36 бит в кадре длительностью 20 мс.

Рисунок 1. Структурная схема кодера на 13 кбит/с.

В приемнике коэффициенты

вновь преобразуются в коэффициенты отражения
, которые затем используются для формирования инверсного решетчатого фильтра.

На выходе кратковременного LPC –анализатора появляется сигнал остатка, который поступает на долговременный LTP –анализатор.

Долговременный предиктор LTP размещается после кратковременного. Делается это для устранения периодичности, которая еще сохраняется в сигнале остатка кратковременного предиктора.

Такое размещение предикторов является наиболее приемлемым с точки зрения получения лучшего качества речи. Долговременный предиктор характеризуется выражением

(1)

Коэффициенты отражения долговременного предсказания определяются также методом Берга для РФ 3-го порядка. На передачу каждого коэффициента отводится 3 бита в кадре. Коэффициенты предсказания

предиктора определяются путем минимизации энергии остатка предсказания.

Взвешивающий фильтр с передаточной функцией

используется для корректировки формантных областей в спектре остатка предсказания относительно уровня шума квантования. Осуществляется это путем выбора g.

Оптимальное значение g определено путем прослушивания. Оно оказалось равным 0,7 … 0,9.

При этом воспринимаемое значение шума квантования становится минимальным.

Длительность импульсной характеристики

составляет 11 выборок, при частоте дискретизации 8 кГц. Значения импульсной характеристики для соответствующих выборок с индексом
представлены в таблице 1.

Таблица 1 Значения импульсной характеристики

6 5(=7) 4(=8)
1,000000 0,700790 0,250793
2(=9) 2(=10) 1(=11)
0,000000 -0,045649 -0,016356

Выход взвешивающего фильтра для каждого субкадра, длительностью 5 мс является

, где
номер выборки сигнала в субкадре с частотой дискретизации 8 кГц.

В соответствии с RPE алгоритмом, для уменьшения количества передаваемых дискретных отсчетов процесса, он подвергается предварительной обработке.

Дискретизированные с частотой 8 кГц отсчеты речи разбиваются на кадры, длительностью 20 мс, и 4 субкадра по 5 мс.

Субкадры процесса на выходе НЧ фильтра, длительностью 5 мс и состоящие из 39 отсчетов, подвергается децимации (прореживанию) в соотношении 1:3.

В результате получаются три выборки по 13 импульсов в каждой. Фазы этих последовательностей сдвинуты друг относительно друга на одну выборку (0,125 мс) (рисунок 2).

Далее производится выбор номера

одной из этих трех последовательностей, обладающей с максимальной энергией, т. е.

В выбранной последовательности определяется импульс с максимальной амплитудой (масштабный) импульс

.

В каждом 5 мс субкадре на передачу номера последовательности

с максимальной энергией затрачивается 2 бита, а на передачу
- 6 бит.
кодируется по логарифмическому закону.

Кроме того, передаются амплитуды всех 13 импульсов выбранной последовательности с максимальной энергией.

При этом на передачу каждого импульса затрачивается 3 бита. На всю последовательность затрачивается

бит в субкадре или
бит в кадре.

Ниже приводится распределение битов по параметрам в 20 мс кадре: 8 коэффициентов

; 4 коэффициента
; 4 коэффициента
; 4 коэффициента
; 4 значения
; 4 значения всех 13 импульсов
. Итого 260 бит/кадр.

Рисунок 2. Пример децимации и селекции импульсов

При частоте кадров 50 Гц общая информационная скорость составляет

кбит/с. Для синхронизации и защиты от ошибок в канале связи отводится 3 кбит/с.

Кодер RPE-LTP-LPC обеспечивает высокое качество речи, которое незначительно снижается при 5% ошибок в канале связи и при отношениях сигнал/помеха 26 и 18 дБ.

Кодер может быть реализован на одном цифровом процессоре типа TMS320C25 с внешней памятью.

2. Структура декодера речи в стандарте GSM

Структурная схема декодера речи в стандарте GSM представлена на рисунке 3.

Рисунок 3. Структурная схема декодера речи стандарта GSM

Рассмотрим кратко структуру и работу декодера – синтезатора речи показанного на рисунке 3.

Из канала связи данные с помощью демультиплексора распределяются по различным блокам декодера. На RPE декодер поступают номер последовательности

, максимальное значение импульса
выборки
, представляющей собой прореженный остаток предсказания.