Смекни!
smekni.com

Катушки индуктивности, дроссели и трансформаторы (стр. 3 из 3)

μс = μн (4)
1+μн(lз / lc)

где lcдлина магнитной силовой линии;

lз – "длина" зазора;

μн – номинальная магнитная проницаемость материала.

Следовательно, изменяя зазор, можно получить разные значения μс <μн, Относительное изменение индуктивности

Lc(t)/Lc (t)/μc

где Lc и μc– начальное значение индуктивности проницаемости сердечника;

Lc(t) и ∆μc(t)– их отклонения во времени.

Для описания закономерностей отклонений ∆μcи Lc также следует воспользоваться логарифмической аппроксимацией. Тогда

Lc(t) / Lc =∆μc(t) / μc = βс lgt/t0

где βс – случайный коэффициент, показывающий скорость изменения магнитной проницаемости сердечника и индуктивности катушки.

Применение ферритовых сердечников позволяет значительно повысить индуктивность, а, следовательно, добротность катушки, при неплохих показателях по стабильности (например, при среднем уходе по индуктивности на 0,5% за три года). При этом необходимо так выбирать материал сердечника, чтобы потери при частоте, на которой работает катушка, были пренебрежительно малы. По полученной μc следует выбрать зазор, пользуясь (4).


Перспективы развития и использования катушек индуктивности в РЭА

Катушка индуктивности является элементом, сопряжение которого с интегральной схемой вызывает большие трудности. Основная причина состоит в сложности создания катушек малых габаритов с высокими индуктивностью и добротностью.

Все это объясняет наметившуюся тенденцию уменьшения количества катушек индуктивности в аппаратуре на интегральных схемах, не требующих катушек индуктивности, и замены их специальными схемами на транзисторах (гираторы).

Применительно к развитию катушек индуктивности общего назначения совершенствование их параметров в основном связано с новыми материалами, имеющими высокую магнитную проницаемость и стабильность на разных частотах, значительно превышающих по своим свойствам современные ферриты. Ферриты – магнитные материалы, представляющие собой соединение оксида железа (Fe2O3) с оксидами других металлов: FeOFe2O3 (феррит железа и другие материалы типа M2+OFe2O3), а также феррогранаты: Y3Fe5O12 и другие типа M2+Fe12O19 и RFeO3 , где R – редкоземельный элемент или Y, ортоферриты CaTiO3.


Катушки связи

Связь между отдельными цепями и каскадами может осуществляться с помощью катушек связи. Основными параметрами катушек связи являются индуктивность и коэффициент индуктивности связи. Индуктивность рассчитывают, как и для катушек индуктивности.

Коэффициент индуктивной связи

k=M / L1 L2

где L1 и L2 – индуктивности связанных катушек, Гн;

М – взаимная индуктивность между ними;

Катушки связи применяются для разделения по постоянному току сеточных и анодных цепей, цепи базы и коллектора и других.

Рисунок 6 – Катушки связи с обмотками:

a – двумя однослойными (k=0,9);

б – однослойной и многослойной (k=0,5);

в – однослойной (раздвоенной) и многослойной (k=0,7);

г – двумя многослойными (k=0,8);

Катушки индуктивности для гибридных интегральных схем

Основным требованием, предъявляемым к катушкам индуктивности для гибридных интегральных схем, является планарность их конструкции.

В гибридных микросхемах могут использоваться миниатюрные катушки индуктивности с сердечниками из ферритов. Их добротность порядка 50, они по габаритам должны быть совместимы с корпусами гибридных микросхем до 10 мм и меньше.

Индуктивность тороидальной катушки с магнитным сердечником прямоугольного сечения

L= 4,6 ·μсan2·10-4lg[(Dср+b)/(Dcp-b)],

где n – число витков;

a и b – высота и ширина сечения сердечника, мм;

Dср – средний диаметр сердечника, мм.

Тонкопленочные катушки индуктивности имеют ограниченный частотный диапазон (10-100 МГц).

Поэтому тонкопленочные катушки обычно имеют на площади 1 см2 число витков не более 10 и выполняются в виде круглой или квадратной спирали (рисунок 7а,б). Индуктивность таких катушек определяют по формулам:

L= 24,75DcpN5/3 lgDср·10-3/t

L= 55,5N5/3 lg8a·10-3/t'

где Dср = (Dн +Dв)/2 – средний диаметр спирали, см;

a=(Aн +Aв)/2 – средняя длина стороны квадрата, см;

t= (Dн +Dв)/2 и t'=(Aн +Aв)/2 – радиальная ширина намотки, см.

Тонкопленочные катушки обладают низкой добротностью (Q = 20 ? 30) и поэтому используются только в тех случаях, когда другие варианты технически невозможны.

Рисунок 7а,б – Тонкопленочные катушки индуктивности:

a – круглая;

б – квадратная;

Дроссели

Дроссель электрический – катушка индуктивности, включаемая в электрическую цепь последовательно с нагрузкой для устранения (подавления) или ограничения переменной составляющей тока различной частоты. Реактивное сопротивление

XL = 2πfL = wL

где f – частота;

w – циклическая частота;

L – индуктивность;

Дроссели обычно имеют сердечник (электротехническая сталь). Применяются преимущественно в электрических фильтрах.

Дроссель высокой частоты – это катушка индуктивности, включаемая в цепь тока высокой частоты для увеличения ее сопротивления. При этом значение постоянного тока или тока низкой частоты не изменяется. Дроссели применяются в цепях фильтрации питания усилителей высокой частоты. Для повышения заградительных свойств дроссель должен обладать значительной по сравнению с контурной катушкой индуктивностью и весьма малой емкостью. Резонансная частота дросселя должна быть гораздо больше частоты выделяемого в контуре рабочего сигнала. В этом случае при индуктивности порядка сотен микрогенри дроссель должен быть эффективен в развязывающих цепях контуров УВЧ. Конструктивно дроссели высокой частоты выполняют намоткой на любой каркас, например, на основания непроволочных резисторов, в виде однослойных сплошных катушек либо катушек типа "универсаль". Дроссели, выпускаемые промышленностью, намотаны на ферритовые стержни и опрессованы пластмассой, их индуктивность сотни микрогенри –единицы миллигенри.


Низкочастотные дроссели

Низкочастотные дроссели, в большинстве случаев предназначенные для уменьшения пульсации выпрямленного напряжения в телевизорах, радиоприемниках, передатчиках и других устройствах, входят в состав сглаживающих и низкочастотных LC-фильтров. Сопротивление дросселя постоянному току весьма мало и равно омическому сопротивлению провода обмотки. Сопротивление дросселя переменному току

Z = 2πfL

(где f – частота питающей сети 50 или 400 Гц или пульсаций 100 или 800;

L – индуктивность дросселя в Гн) составляет несколько единиц – десятков кOм и зависит от требуемого уровня допустимых пульсаций.

В управляемых дросселях, наоборот, используется свойство магнитного материала изменять свое сопротивление переменному току при изменении рабочей точки магнитной характеристики.


ЛИТЕРАТУРА

1. Рычина Т.А. Устройства функциональной электроники и электрорадиоэлементы., Мн: Радио, 2005г.

2. Ефимов А.В, Микроэлектроника, Мн: ВШ, 2004г.

3. Свитенко В.И. Электрорадиоэлементы, Мн: Радио, 2006г.