Глобальной модели отвечает, например, модель транзистора по Эберсу-Моллу или Гуммелю-Пунну, локальной - факторные модели,например, в ограниченном частотном диапазоне; точечной - параметры в отдельной точке плана ФЭ.
Большое разнообразие моделей РК приводит к необходимости использования разнообразных способов и технических средств для измерения их параметров. Как правило, статические и динамические параметры РК измеряют на разных технологических установках.
Методы построения средств измерения для идентификации моделей РК могут быть сведены к следующим принципам, учитывающим особенности подключения РК и сигналов, подлежащих обработке [4, 5, 11, 14, 18, 36, 44]:
- разделение напряжения и тока (для двухполюсников);
- сравнение двухполюсника с образцовым в мостовых схемах;
- сравнение двухполюсника или многополюсника с комплектом образцовых двухполюсников;
- разделение падающих и отражённых волн для РК СВЧ диапазона;
- определение резонансной частоты, Q - метры;
- анализ картины стоячей волны, измерительные линии СВЧ диапазона.
Особое значение имеет задача по объединению операций измерения статических и динамических параметров на одной технологической установке, если цепи электропитания РК по постоянному и переменному току не разделены.
Удачное решение этой задачи для транзистора приведено в работе [67]. Данный способ электропитания РК может быть распространён на другие РК, например, операционные усилители.
Отечественная и зарубежная промышленность выпускает достаточно широкую номенклатуру измерительных приборов, чтобы решить поставленные выше задачи. Особенно эффективны приборы фирмы HewlettPackard, ориентированные на комплексную автоматизацию измерительного процесса. Однако обращаем внимание на следующие факты:
Применение узкоспециализированных измерительных приборов приводит к резкому увеличению затрат, так как эти приборы дороги.
В случае измерения активных РК практически в каждом конкретном случае приходится решать задачи электропитания по постоянному и переменному току.
Разнообразие номенклатуры и типоразмеров РК, подлежащих измерению, выдвигает на одно из первых мест задачу подключения объекта измерения к измерительной схеме, особенно в случае определения динамических параметров.
В этой связи возникает проблема разработки нестандартных способов и средств измерения, позволяющих при использовании стандартных универсальных измерительных приборов ограниченного состава производить автоматизированное измерение параметров широкой номенклатуры РК в ограниченное время. Решение этих задач отражено в работах [25-70], выполненных в ВГТУ в 70-х - 90-х годах, будет рассмотрено в данном разделе.
3.2 Устройства для измерения двухполюсников
3.2.1 Измерение статических параметров
Статические параметры определяют в виде ВАХ или моделью Эберса-Молла (полупроводниковые диоды).
Для определения ВАХ определенное преимущество имеет зависимость в виде U(l), когда ток через ДПР поступает от источника тока, и регистрируют напряжение на его электродах.
При обратном смещении, когда сопротивление перехода весьма велико, электропитание производится от источника напряжения.
ВАХ при прямом смещении по Эберсу-Моллу определяют по уравнению
Из изложенного следует, что определение ВАХ не представляет сложности. Принятый способ измерения динамических параметров позволяет производить определение статических и динамических параметров ДПР на одной технологической установке.
3.2.2 Y-устройства для измерения ДП
Первое (базовое) измерительное устройство, показанное на рисунке 3.1, предназначено для измерения линейных ДПР. По структуре оно соответствует устройству по а.с. № 1580282 СССР при применении ручных операций калибровки параметров Lk и Х0. Устройство содержит генератор 1 для электропитания измерительных цепей по переменному току, векторный вольтметр (ВВ) 2 для регистрации модуля и разности фаз переменных напряжений, элемент Zr для моделирования внутреннего сопротивления генератора 1, если это необходимо, контакт! для подключения измеряемого ДПР с полным сопротивлением Z. В качестве элемента Zr в первом приближении применяют резистор с учетом его паразитных параметров.
В процессе калибровки по напряжениям °, и*, ' и изопределяем параметры эквивалентной схемы по формулам (2.43), (2.47) рассчитываем индуктивности Lk, lq, если значение индуктивности L0 будет для аттестации вектора образцовых нагрузок uq.
Y = l/W + j/<9 (3.4)
где W - параметр, вычисляемый по формуле (2.37).
При измерении нелинейных ДПР в схему рис. 3.1 добавляем источник тока (напряжения) для смещения рабочей точки и цепочку R( , С} , С2 развязки цепей электропитания по переменному и постоянному току (рисунок 3.2).
При измерении полупроводниковых диодов источник 3 работает в режиме источника тока. ВАХ определяют по зависимости UC(IC), где Uc , Ic -постоянные составляющие тока и напряжения на измеряемом диоде.
Динамические параметры в виде проводимости Y определяют по формуле (3.4).
В случае обратного включения диода источник 3 переключают в режимисточника напряжения. По значению напряжения U на выходе Г регистрируют полную проводимость в зависимости от напряжения обратного смещения Uc (рисунок 3.2). Полную проводимость Y рассчитывают по формуле (3.4), а значение Сбар барьерной емкости по формуле
C6ap=Y/co, (3.5)
где со - угловая частота.
При измерении мощных нелинейных ДПР возникает проблема электропитания по постоянному току из-за большого уровня мощности, которая рассеивается на резисторе rj(рисунок 3.2). Для устранения этого эффекта предлагается использовать схему рисунок 3.3, в которой в отличии от схемы рисунок 3.2 резистор R] шунтирован катушкой индуктивности lj.
Измерение параметров ДПР производится также как в случае применения устройства на рисунке 3.2. При этом постоянная составляющая тока проходит через катушку liбез падения напряжения на ней. Внутреннее сопротивление генератора 1 составляет включенные в параллель по переменному току сопротивления Zr , riи coL]. Сопротивление toL] в рабочем диапазоне частот выбирается из уровня
Оптимальный режим при измерении динамических параметров достигается при условиях [51]
3.3 Устройства для измерения МП
В качестве базового для первого из рассматриваемых устройств выбрано устройство по А.с. 1084709 СССР, МКИ G 01 R 31/26 [1]. Развитие устройства произведено с учётом способа измерения по А.с. 1317370 СССР, МКИ G 01 R 27/32 [2]. Структурная схема первого устройства приведена на рисунке 3.4.
Устройство содержит: генератор синусоидального напряжения (ГСН), выход которого соединён с опорным выходом векторного вольтметра (ВВ) и первыми выходами К1 и К2, вторые выходы которых соединены с общей шиной; программатор (П), выводы которого соединены с управляющими входами переключателей ю, К2 и КЗ; входы переключателя КЗ соединены с базовым и коллекторным контактами держателя транзистора (ДТ), а его выход с измерительным входом ВВ.
Выход переключателя К\ через цепочку С2, R2 соединены с базовым входом ДТ, а выход переключателя К2 через цепочку СЗ, R3 соединён с коллекторным входом ДТ. выход усилителя (У) через резистор R\ соединён с базовым входом ДТ для электропитания базы транзистора по постоянному току, а выход источника тока (ИТ) через резистор R5 соединён с коллекторным входом VTIпо постоянному току. Делитель на резисторах R4, R6 предназначен для деления напряжения Ut. Его выход соединён с входом У. Источник опорного напряжения (ИН). Через резистор R6 соединён с входом У. Конденсаторы С2 и СЗ служат для разделения цепей постоянного и переменного тока, а конденсаторы С1, СЗ, С 4 и С5 для развязки указанныхцепей. Блок питания (БП) предназначен для электропитания по постоянному току блоков П и У.
Применение устройства по рисунку 3.4 позволяет стабилизировать рабочую точку (РТ) со стороны коллектора независимо от типа или структуры транзистора. Рассмотрим процесс стабилизации РТ на примере биполярного транзистора п-р-п структуры.
напряжение Ukрассчитывают по формуле
На практике коэффициент KQвыбирают в интервале 0,1-0,5. Таким образом, РТ транзистора VTIопределяют ток Ikна выходе ИТ и напряжение U0на выходе ИН. При использовании программируемых ИТ и ИН процессустановления РТ можно автоматизировать, управляя источниками от ПК.
Для измерения Y- параметров устройство на рисунке 3.4 в отличие от устройства [1] было приспособлено для измерения в режиме определённом способом [2]. Для этого предварительно измерительную схему калибруют в режиме холостого хода с помощью образцовых мер ZOI и Z02 и измеряютматрицу С/0 полюсных напряжений холостого хода, а в рабочем (приподключенном транзисторе) режиме измеряют матрицу U9элементами которой служат полюсные напряжения при прямом и обратном включении транзистора.
Управление режимом измерения производится программатором П с помощью ключей Kl-КЗ. Соответствующие напряжения регистрируют с помощью ВВ подключённого к выходу ключа КЗ.
Для калибровки устройства в режиме холостого хода первую образцовую меру Z01 подключают между 1 и 3 контактами ДТ и принормальном положении Kl-КЗ измеряют напряжение С/0, на базовом контакте ДТ. Далее переключатели Kl-КЗ приводят в рабочее состояние. Вторую образцовую меру Z02 подключают к контактам 2 и 3 ДТ и измеряютнапряжение t/02 на коллекторном контакте ДТ. Напряжения С701 и С/02 составляют вектор калибровочных напряжений Uk.
Для определения матрицы Yсначала рассчитывают матрицы передачи К0 - холостого хода и К нагруженного режима по формулам
При определении У - матрицы транзистора по формулам (3.7) - (3.11) принципиально исключаются систематические погрешности, вносимые паразитными индуктивностями и ёмкостями измерительных цепей, а также входной цепи ВВ. Также исключаются мультипликативные погрешности, возникающие при измерении модулей комплексных напряжений и аддитивные при измерении разностей их фаз, так как в расчётных формулах используются отношения этих напряжений. Однако возникают определённые сложности при аттестации сопротивления Zn, что вызывает дополнительные погрешности. Эти погрешности можно исключить при применении второго измерительного устройства, структурная схема которого показана на рисунке 3.5.