Диффузионные резисторы ИС подвержены резкому влиянию радиации. Их стойкость существенно зависит от изоляции элементов ИС. Наименее чувствительны к радиоактивному излучению резисторы, с диэлектрической изоляцией, а наиболее чувствительны — резисторы, изолированные р-n-переходом. Это объясняется тем, что обратно включенные р-n-переходы оказывают шунтирующее действие при радиоактивном излучении, так как обратный ток диодов в результате облучения значительно возрастает. Поэтому в ЭС, эксплуатируемых при повышенном уровне радиации, нежелательно применять ИС с изоляцией элементов при помощи обратносмещенных р-n-переходов.
Радиационная стойкость конденсаторов определяется технологией их изготовления и применяемыми материалами. Как показывает практика, органические диэлектрики почти на порядок более чувствительны к радиоактивным излучениям, чем неорганические. Барьерная емкость закрытого р-n-перехода, часто используемая в качестве конденсатора ИС, очень чувствительна к облучению. При больших дозах облучения эта емкость существенно увеличивает время задержки включения логических ИС, а следовательно, ухудшает их быстродействие. Тонкопленочные структуры типов МДМ и МДП, также используемые в качестве конденсаторов ИС, радиационно более стойки. Наиболее чувствительным параметром тонкопленочных конденсаторов является проводимость диэлектрической пленки, которая при облучении в большинстве случаев увеличивается.
Радиационная стойкость катушек индуктивности определяется в основном степенью повреждения материалов. Катушки индуктивности без сердечника и пленочные спиральные катушки индуктивности наиболее стойки к радиации. За счет радиационного изменения активного сопротивления катушки индуктивности может незначительно измениться только добротность. Однако этот эффект не проявляется при облучении потоками плотностью до 1018 см-2 –с-1 . Индуктивность пленочных спиральных катушек с ферромагнитными пленками при облучении в реакторе или на гамма-установке большими дозами (105 Гр) уменьшается за счет радиационного изменения магнитной проницаемости сердечников. При таких дозах облучения в катушках индуктивности, покрытых защитными лаками или смолами, происходят механические разрушения конструкции катушек и уменьшение сопротивления изоляции.
Источники радиоактивного излучения.
В качестве источников радиоактивного излучения в лабораторных условиях применяют ускорители заряженных частиц и ядерные реакторы. В «классических» ускорителях ускоряющее поле создается внешними радиотехническими устройствами (генераторами). В ускорителях с коллективными методами ускорения заряженных частиц ускоряющее поле создается другими заряженными частицами (электронным пучком, электронным кольцом, плазменными волнами). В линейных ускорителях траектории заряженных частиц близки прямой линии, а в циклических ускорителях частицы под действием ведущего магнитного поля (постоянного или изменяющегося во времени) движутся по орбитам, близким к круговым. В резонансных ускорителях ускорение производится высокочастотным электрическим полем и ускоряемые частицы движутся синхронно в резонанс с изменением поля. В нерезонансных — направление поля за время ускорения не изменяется.
Классификация ускорителей заряженных частиц:
По способу получения ускоряющего поля:
· "классические";
· с коллективными методами ускорения;
По виду траекторий частиц:
· линейные;
· циклические;
По типу ускоряемых частиц:
· электронные;
· протонные;
· ионные;
По характеру ускоряющего поля:
· резонансные;
· нерезонансные (индукционные и высоковольтные).
Увеличение энергии частиц в ускорителях происходит за счет действия на них сил электрического поля Большую кинетическую энергию заряженные частицы могут получать в результате: однократного прохождения ускоряющего зазора, к которому приложена большая разность потенциалов; движения в вихревом электрическом поле; многократного прохождения ускоряющего зазора, к которому приложена сравнительно невысокая разность потенциалов (частицы возвращаются в область ускоряющего зазора поперечным магнитным полем).
Рисунок 4 - Диафрагмированный волновод с бегущей волной: 1 — ускоряемый сгусток электронов; 2 — диафрагмы; штриховыми линиями показано распределение магнитного поля.
В электростатических ускорителях линейного типа ускорение заряженных частиц осуществляется в ускорительной линии.
Ускорительная линия представляет собой вакуумную трубку с расположенными в ее торцах электродами, к которым прикладывается высокая разность потенциалов. Остаточное давление газа в ускорительной трубке должно быть довольно низким, чтобы при работе в ней не возникал газовый разряд. Поскольку при функционировании ускорителя происходит непрерывное газовыделение элементами конструкции трубки и натекание газа из ионного источника, ускорительные трубки работают при непрерывной откачке высокопроизводительными насосами. В качестве источников ионов в настоящее время применяют источники с холодным катодом и источники с высокочастотным разрядом, в которых происходит ионизация газа. Образовавшиеся ионы с помощью специальной системы электродов формируются в пучок, попадают в ускорительную трубку, где приобретают высокую энергию.
Электростатические ускорители нашли широкое применение при проведении радиационных испытаний ЭС для получения энергии заряженных частиц в диапазоне 1...12 МэВ. Кроме того, их используют для инжекции заряженных частиц в другие, более крупные ускорители.
Волноводный ускоритель линейного типа позволяет получить более высокую энергию заряженных частиц, в частности электронов. Ускоряющей системой в нем служит цилиндрический диафрагмированный волновод (рисунок 4).
Циклические ускорители работают на принципе ускорения заряженных частиц, движущихся по окружности под действием магнитного поля. При этом частицы набирают большую конечную энергию благодаря многократному прохождению ими ускоряющего зазора, к которому приложена сравнительно небольшая разность потенциалов. Траектории частиц в циклических ускорителях имеют различную форму (рисунок 5). В современных циклических ускорителях используют постоянные или переменные управляющие магнитные поля.
Рисунок 5 - Идеальная траектория заряженных частиц в некоторыхциклических ускорителях:
а — спиральная (циклотрон); б — спиральная (микротрон); в — круговая (бетатрон).
К циклическим ускорителям с постоянным во времени магнитным полем относятся циклотроны, фазотроны (синхроциклотроны) и микротроны.
Циклотрон предназначен для циклического ускорения тяжелых частиц — протонов и ионов. Частота ускоряющего электрического поля в нем постоянна во времени. Движение частиц в циклотроне происходит по спирали, разворачивающейся от центра к периферии вакуумной камеры ускорителя. Ускоряемые частицы дважды за период обращения проходят ускоряющий зазор. Ускоренные частицы выводятся из вакуумной камеры с помощью специального устройства, называемого дифлектором, и далее попадают в вакуумную трубку ионопровода, по которому направляются к месту использования. С помощью циклотрона протонам можно сообщать энерглю 20...25МэВ.
Фазотрон, или синхроциклотрон — циклический резонансный ускоритель тяжелых частиц. Движение частиц в фазотроне, как и в циклотроне, происходит по раскручивающейся спирали. В фазотроне для обеспечения резонанса частота ускоряющего электрического поля изменяется синхронно с изменением частоты обращения частиц. Благодаря этому в данном ускорителе может быть получена значительно большая энергия, чем в циклотроне. Ускоренные частицы выводятся из вакуумной камеры к месту использования аналогично способу, рассмотренному в циклотроне.
К циклическим ускорителям с изменяющимся во времени управляющим магнитным полем относятся бетатрон, синхротрон и синхрофазотрон. Бетатрон — циклический индукционный ускоритель; предназначенный для ускорения бета-частиц, т. е. электронов.
Рисунок 6 - Конструкция бетатрона:
а — к пояснению принципа действия (1 — катушка возбуждения;
2 — инжектор; 3 — мишень); б — конструкция (1 — вакуумная камера;
2 — обмотка возбуждения; 3 — магнитопровод; 4 — полюсные наконечники; 5 — смещающие обмотки)
Частицы, вылетающие из инжектора 2, попадают в переменное магнитное поле Ф, двигаясь в котором по круговой орбите они увеличивают свою энергию под действием вихревого электрического поля. Ускорение электронов при движении по орбите происходит за время нарастания магнитного поля от нуля до максимального значения, т. е. за четверть периода. Направление ускоряющего вихревого электрического поля в течение этого промежутка времени не меняется. За время ускорения электрон успевает сделать огромное (до нескольких миллионов) число оборотов по круговой орбите постоянного радиуса ro, так называемой равновесной орбите. Хотя энергия, приобретаемая электроном за один оборот, невелика, конечное значение энергии оказывается очень большим. Ускоренные электроны выводятся на мишень 3.
По принципу действия бетатрон аналогичен обычному трансформатору, поэтому не случайно их конструктивное сходство (рисунок 6,б). Катушка возбуждения соответствует первичной обмотке трансформатора, а роль вторичной обмотки выполняет электронный луч. Число оборотов, совершаемых электронами в процессе ускорения, соответствует числу витков вторичной обмотки. Ускорение электронов осуществляется в вакуумной камере тороидальной формы. По окончании цикла ускорения электроны должны быть смещены с равновесной орбиты для бомбардировки мишени, установленной в вакуумной камере (для бетатронов, предназначенных для генерирования жесткого рентгеновского излучения), или выведены из камеры в атмосферу (для бетатронов, служащих в качестве источников электронов высокой энергии) через выводное устройство (например, дифлектор). Бетатрон может ускорять электроны до энергий 100... 300 МэВ. Однако ввиду громоздкости его конструкции для энергий выше 100 МэВ предпочтительнее использовать синхротрон.