Смекни!
smekni.com

Интеграция локальных вычислительных сетей МИЭТ и студенческого городка МИЭТ (стр. 7 из 14)

Достоинства алгоритма WEP:

- Возможность периодической смены ключа и частой смены вектора инициализации;

- Самосинхронизация шифра по каждому сообщению, что снижает вероятность потери пакетов;

- Эффективность алгоритма и возможность его реализации как программными, так и аппаратными средствами;

- Статус дополнительной возможности, что позволяет пользователю самому решать вопрос об использовании этого алгоритма.

Сущность алгоритма WEP поясняется на рисунке, приведенном ниже.

Секретный ключ (40 или 128 бит) вводится во все беспроводные устройства сети. При необходимости его может изменять администратор беспроводной сети.

При передаче пакета в аппаратуре формируется вектор инициализации, который объединяется с секретным ключом в результате операции конкатенации. Полученный вектор начальной установки используется для приведения в исходное состояние генератора псевдослучайных последовательностей, начинающего формировать псевдослучайную последовательность двоичных символов, равную длине передаваемого пакета с 4-байт контрольной комбинацией циклического кода CRC. Такая последовательность складывается поразрядно с символами передаваемого пакета и CRC. По радиоканалу передаются оригинальный для каждого пакета вектор инициализации и зашифрованный пакет данных с CRC.

На приемной стороне из пакета выделяется 4-разрядный вектор инициализации, из которого в результате конкатенации с тем же секретным ключом что и на передающей стороне, формируется вектор начальной установки генератора псевдослучайной последовательности.


Рис.15. Защита передаваемых данных с помощью алгоритма WEP

Сформированная последовательность суммируется по модулю 2 с зашифрованной частью принятого пакета, в результате чего выделяются незашифрованные данные и CRC, используемая для контроля правильности приема пакета данных.

Преимущества беспроводных средств связи

Беспроводные технологии обладают выгодными отличиями от кабельных технологий по следующим параметрам:

- Стоимость. Средние расходы на организацию двухмегабитного (2Мбит/сек) канала точка-точка не зависят от расстояния и равняются примерно $3,000. При расстоянии между объектами более 500 метров применение беспроводной технологии выгоднее, чем прокладка оптоволокна.

- Удаленность. При невозможности или нецелесообразности прокладки кабеля между объектами возникает потребность в беспроводной технике. Прокладка индивидуального кабеля стоит дорого. К тому же получить разрешение на проведение кабельных работ практически невозможно. Коммерческие организации предоставляют выделенные линии в аренду по высоким ценам.

- Срочность. Установка и настройка оборудования не требует большого количества времени, и занимает от силы несколько дней.

- Защита инвестиций. Радиооборудование можно продать в случае необходимости. Тогда как кабель - это средства, "закопанные в землю".

- Легкость в обслуживании. Радиооборудование легко настраивается и перенастраивается. Регламентные и ремонтные работы не связаны с подземными работами, которые проводятся только уполномоченными организациями и, следовательно, требуют много времени.

- Гибкость. Применение беспроводных технологий позволяет создавать практически любые конфигурации сетей передачи данных на больших территориях без существенных капиталовложений. Например, использование всенаправленной антенны дает возможность быстро образовывать сети различной конфигурации.

- Мощность. Компьютерные радиосети представляют собой могучее средство связи, т.к. позволяют организовывать обмен данными с пропускной способностью в несколько десятков мегабит в секунду. По этому параметру радиосредства превосходят все современные проводные модемы.

- Надежность. Использование широкополосной шумоподобной передачи сигнала позволяет получать помехозащищенные каналы связи, обеспечивающие надежность передачи данных и невозможности несанкционированного доступа в сеть.

В настоящее время на рынке России предлагается аппаратура, позволяющая реализовать различные конфигурации беспроводных сетей, добиваясь при этом оптимизации параметра «цена – производительность – функциональность».

Анализ целесообразности реализации связи ЛВС МИЭТ и Студгородка МИЭТ посредством радиоканала

В настоящее время, вариант физической интеграции локальных вычислительных сетей МИЭТ и студгородка МИЭТ средствами радиосвязи является наиболее реальным из всех рассмотренных.

Прежде всего, стоит обратить внимание на то, что сеть МИЭТ на данный момент уже имеет свой радиоканал, с точкой доступа (специальное устройство со всенаправленной антенной, располагающееся на крыше высотной постройки), находящейся в прямой видимости с крыши 6го корпуса общежития МИЭТ. Оборудование работает по технологии DSSS, ввиду ее лучшей приспособленности к связи между достаточно удаленными точками в пределах черты города, а так же за счет лучших характеристик надежности и скорости связи. Таким образом, для связи сети института с сетью студгородка достаточно установить необходимое оборудование на стороне ЛВС студгородка МИЭТ, и настроить связь с точкой доступа. Факт отсутствия необходимости проведения монтажных работ на стороне ЛВС МИЭТ и установки промежуточного ретранслятора (поскольку прямой видимости между институтом и студгородком нет), обуславливает минимизацию необходимых финансовых затрат, а так же отсутствие ряда организационных проблем, связанных с реализацией данного вида связи.

Необходимое оборудование

Конфигурация

Для обеспечения связи сети студенческого городка МИЭТ с радиоканалом МИЭТ достаточно следующих компонентов:

1. Беспроводной сетевой адаптер Radio-Ethernet, работающий по технологии DSSS

2. Направленная антенна

3. Системный блок (компьютер) с конфигурацией, достаточной для обработки и ретрансляции двух потоков данных, поступающих на сетевые интерфейсы.

4. Сетевой адаптер Ethernet, работающий по технологии 10Base-T и/или 100Base-T.

Принцип функционирования

Подключение

Вышеперечисленное оборудование должно быть установлено на территории студгородка МИЭТ и подключено к ЛВС студгородка.

Рис.16. Схема работы радиоканала

Системный блок выполняет функции моста, обеспечивающего взаимодействие двух сегментов с разной средой передачи данных. В системный блок принятой конфигурации инсталлируется адаптер Radio-Ethernet, который с помощью высокочастотного кабеля подключается к направленной антенне. Направленная антенна, в свою очередь, должна быть сориентирована на всенаправленную антенну точки доступа радиоканала МИЭТ. Так же системный блок имеет сетевой Ethernet-адаптер для проводной связи, желательно поддерживающий двухскоростной (10/100 Мбит/с) режим работы.

Взаимодействие на канальном уровне

Взаимодействие происходит следующим образом. Радиомост, подключенный к локальной сети студгородка МИЭТ, при получении пакета на один из своих интерфейсов, отправляет его на второй интерфейс при первой же возможности (то есть до того момента, как освободится среда передачи, к которой подключен второй интерфейс). Мост хранит полученные пакеты в специальном буфере в порядке их поступления на интерфейс (то есть в виде очереди). После трансляции пакета в другой сегмент он удаляется из буфера. (Примечание: адаптер беспроводной связи так же имеет адрес канального уровня (MACADDRESS), который однозначно его идентифицирует, так что принцип передачи кадров в сетях Ethernet (802.3) и Radio-Ethernet (802.11) на канальном уровне один и тот же). На стороне МИЭТ тоже стоит радиомост, который функционирует по аналогичной схеме. Таким образом, происходит «прозрачное» взаимодействие двух кабельных сетей посредством радиоканала.

Взаимодействие на сетевом уровне

Для того, чтобы обеспечить нормальное взаимодействие на сетевом уровне, необходимо реализовать программную маршрутизацию на радиомосте. Таким образом, мост транслирует пакеты из одного сегмента в другой только в том случае, если IP-адрес узла назначения, находится во втором сегменте. Такое соответствие устанавливается в карте маршрутизации. В таком случае обмен данными между сетями может осуществляться только посредством использования протокола IP в качестве транспортного.

Выбор активного оборудования и его обоснование

Конфигурация системного блока

Для поставленной задачи не требуется серьезных процессорных или иных ресурсов, поскольку скорость передачи данных по каналам связи не превышает 10Мбит/с. Затраты ресурсов на маршрутизацию и фильтрацию трафика тоже в данном случае незначительные. Исходя из этого, а так же с учетом показателя цена/качество рекомендуется следующая конфигурация системного блока для реализации на его базе радиомоста, маршрутизатора и брэндмауэра:

Процессор Intel Pentium 166MHz
Материнская плата AsusTX97E (Intel 430TX)
Оперативная память 32MB
Объем жесткого диска 850MB

Таблица 11. Конфигурация системного блока радиомоста

Сетевой адаптер

Сетевой адаптер, используемый для подключения к внутренним сегментам сети студгородка, должен поддерживать одну из технологий 10Base-T или 100BaseT. Однако, учитывая фактор стоимости сетевых адаптеров, а так же тенденцию перехода от технологии 10Base-T к более скоростной 100Base-T, рекомендуется установить сетевой адаптер EtherExperss-100 фирмы Intel.

Радиооборудование

В качестве основного устройства, обеспечивающего связь по радиоканалу, был выбран адаптер Radio-Ethernet серии Cisco-AIR 340, производимый подразделением компании CiscoSystems – фирмой Aironet.