Смекни!
smekni.com

Индивидуальный прием программ спутникового вещания (стр. 4 из 9)

Основной задачей конвертора является приём слабых сигналов в установленных для спутникового вещания диапазонах частот, а также усиление и преобразование этих сигналов в полосу первой ПЧ 0,95…2,15 ГГц. Большинство серийно выпускаемых конверторов для индивидуального приёма сигналов в диапазоне частот 10,7…12,75 ГГц являются полнодиапазонными и универсальными, допускающими равную возможность приёма программ аналогового и цифрового вещания. Все они содержат встроенный поляризационный селектор для разделения сигналов с ортогональной линейной поляризацией. Современные модели конверторов имеют весьма низкий коэффициент шума (0,5…0,8 дБ), высокое усиление (50…60 дБ), приемлемые значения абсолютной нестабильности частоты (0,5…0,7 МГц) и уровня подавления фазовых шумов гетеродина (минус 55дБ при отстройке на 1кГц, минус 75 дБ при отстройке на 10 кГц, минус 95дБ при отстройке на 100 кГц).

Низкий коэффициент шума nШКв современных конверторах достигнут за счет применения в первых его каскадах малошумящих GaAs-транзисторов с высокой подвижностью электронов (HEMT-транзисторов). Адаптация конверторов к цифровому формату вещания реализована за счет улучшения линейности их АЧХ и ФЧХ, снижения уровня фазовых шумов и обеспечения должного согласования с кабелем (КСВн ≤ 2). Минимизация уровня фазовых шумов в конверторе продиктована опасностью роста ошибок на выходе ЦПСВ из-за добавления в конвертируемый сигнал с QPSK модуляцией дополнительного фазового сдвига. Оценка уровней фазовых шумов обычно производится относительно уровня несущей гетеродина при заданной величине отстройки по частоте от номинального значения несущей.

Для радикального снижения уровня фазовых шумов гетеродина и повышения стабильности частоты некоторые модели конверторов оснащаются системой ФАПЧ. Такие модели используются при приёме узкополосных сигналов, например, сигналов радиовещания.

В состав типовой структурной схемы полнодиапазонного конвертора входят (рисунок 3.2): поляризационный селектор (ПС) с двумя ортогонально расположенными в круглом волноводе электрическими зондами, малошумящие усилители (МШУ), полосовой фильтр (ПФ), смеситель (См), два гетеродина (Г1 и Г2), усилитель промежуточной частоты (УПЧ), преобразователь напряжений (ПН) и два управляемых электронных ключа (ЭК1) и (ЭК2).

Выбор сигналов с требуемой поляризацией осуществляется подачей с ЦПСВ (по соединительному кабелю) управляющего напряжения 13 или 17 В на ЭК1, который подключает напряжение питания на МШУ1 или МШУ2 от ПН. При наличии на ЭК1 напряжения 13 В работает МШУ1 и усиливает наведенные на электрический зонд сигналы с вертикальной поляризацией. При подаче 17 В работает МШУ2 и усиливает сигналы с горизонтальной поляризацией.

Рисунок 3.2 – Структурная схема полнодиапазонного конвертора

МШУ1 и МШУ2 обеспечивают усиление 13...15 дБ и низкий коэффициент шума. Усилитель МШУ3 выполняется на биполярных транзисторах по схеме максимального усиления. Полосовой фильтр ослабляет сигналы вне полосы пропускания 10,7..12,75 ГГц, в том числе сигналы на зеркальных частотах 7,6…9,65 ГГц. ПФ выполняется многозвенным на отрезках микрополосковых линий. Смеситель СМ строится на СВЧ-диодах или транзисторах по балансной или двойной балансной схеме. Коэффициент передачи смесителя в конверторе не является определяющим показателем, важнее надежность и простота реализации этого устройства.

Гетеродины имеют внешнюю стабилизацию частоты диэлектрическими резонаторами, которые выполнены на основе титаната кальция и алюмината лантана. Эти материалы имеют высокую диэлектрическую проницаемость (εД≈35…40), низкий температурный уход частоты и обеспечивают добротность резонансных элементов около 1…3 тыс. ед. Гетеродин Г1 настроен на частоту 9,75 ГГц, гетеродин Г2 – на частоту 10,6 ГГц. Напряжение питания на требуемый гетеродин поступает с ПН через ЭК2 под действием управляющего сигнала (в виде меандра) с частотой 22 кГц. При нулевой амплитуде этого сигнала включается Г1 и осуществляется преобразование входных сигналов нижнего поддиапазона 10,7...11,9 ГГц в полосу 0,95...2,15 ГГц. При подаче управляющего сигнала 22 кГц с амплитудой 0,7 В включается Г2 и осуществляется преобразование сигналов верхнего поддиапазона частот 11,5...12,75 ГГц в ту же полосу первой ПЧ (рисунок 3.3). Преобразованные на ПЧ сигналы усиливаются на 30…35 дБ в многокаскадном УПЧ на микросхеме и поступают через разделительный конденсатор С1 на выход конвертора. Питание на УПЧ подается от ПН, в котором требуемое напряжение (5 В) получается из напряжений 13 или 17 В.

Рисунок 3.3 – Схема преобразования частот в область спутниковой ПЧ

Таким образом, в полнодиапазонном конверторе входные сигналы спутниковых каналов в полосе частот ΔfВХ = 12,75–10,7=2,05 ГГц селектируются по поляризации и поддиапазонам частот и переносятся в полосу первой ПЧ ΔfВЫХ = 2,15–0,95 = 1,2 ГГц. При частотном разносе между несущими спутниковых каналов 40 МГц в пределах полосы ΔfВЫХ = 1,2 ГГц можно разместить 30 несущих и передать в цифровом формате 180…270 ТВ-программ (6−9 программ на несущей канала).

Общее усиление полнодиапазонного универсального конвертора КРК обычно превышает 50дБ и выбирается разработчиками с учетом потерь в соединительном кабеле при условии обеспечения требуемого уровня сигнала навходе ЦПСВ. Возможная величина потерь в кабеле определяется не толькоусилением конвертора, но и его шумовыми характеристиками и следующими заним устройствами (см. рисунок 3.1).Наличие этих устройств приводит к изменению значения ЭШТ конвертора

, К (3.2)

на величину

, К (3.3)

где nШ.К. – коэффициент шума тюнера, дБ.

Если ограничить относительное увеличение ЭШТ на входе конвертора значением

, то из (3.2) и (3.3) несложно для известных КР.К., nШТ и nШК определить допустимое затухание в кабеле и его длину:

, дБ (3.4)

, м, (3.5)

где αКАБ– погонное затухание в кабеле (дБ/м) на верхней частоте передаваемых сигналов (fВ= 2,15 ГГц).Величину μ можно принять 0,03…0,07, что соответствует увеличениюЭШТ конвертора на 3…7 % из-за влияния на ТК следующих за ним устройств.

При использовании устройств с типовыми параметрами (nШК = 0,8 дБ, КР.К.= 50 дБ, nШТ = 10 дБ, μ = 0,05, αКАБ= 0,3 дБ/м), согласно (3.4) и (3.5), допустимые потери в кабеле составляют 20 дБ, а его длина − 66 м. Если требуется кабель большей длины, то необходимо выбрать конвертор с большим усилением или установить дополнительный усилитель. Увеличение усиления конвертора на 10 дБ (относительно КРК = 50 дБ) позволяет увеличить длину кабеля на 33 м (при αКАБ= 0,3 дБ/м).

Конструктивно полнодиапазонный конвертор выполнен по гибридно-интегральной технологии СВЧ. Он представляет собой малогабаритный герметичный и устойчивый к температурным изменениям блок с фланцевым или рупорным облучателем для работы с прямофокусными или офсетными антеннами соответственно.

Всё многообразие моделей цифровых приёмников спутникового вещания можно разделить на устройства профессионального и бытового назначения. Профессиональные приёмники характеризуются высокими качественными показателями, многофункциональностью, значительным числом входных и выходных интерфейсов, наличием встроенных устройств контроля параметров, возможностью дистанционного управления его параметрами и др. Многие из них используют модульный принцип построения и поддерживают несколько уровней и профилей стандарта MPEG-2. Профессиональные ЦПСВ используются на головных станциях кабельного и микроволнового вещания (системы MMDS, LMDS, MVDS), в студийных комплексах подготовки программ, на земных станциях ЦСВ для контроля за передаваемой информацией, в репортажных комплексах сбора новостей и др. Для снижения затрат на приёмное оборудование разработаны и широко используются многоканальные (6−8 - канальные) приёмники.

Цифровые приёмники бытового назначения применяются для индивидуального и коллективного приёма ТВ-программ и располагают ограниченными функциональными возможностями. Они выпускаются в виде абонентских приставок (Set Top Boxes), модульных блоков к головным станциям или компьютерных карт DVB-PCI. Некоторые модели, обладая всеми признаками бытового приёмника, имеют дополнительные опции, например, встроенный модем по стандарту V22bis, многосистемный блок условного доступа и др. Цифровой приёмник в виде карты DVB-PCI устанавливается в системный блок ПК и соединён по кабелю с конвертором и антенной. Карта оснащена слотом для абонентской декодирующей карточки. Технические характеристики DVB-PCI-карты практически совпадают с характеристиками абонентских приставок. Получили применение карты типа Vision Plus VP-1030A rev.4.0 и типа Skystar 2 rev.2.6B.

Основываясь на единых требованиях к структуре ЦПСВ бытового назначения, на рисунке 3.4 приведена его типовая модель и отмечены принятые уровни функционирования.

Рисунок 3.4 – Типовая модель и уровни функционирования ЦПСВ

Так, физический и канальный уровни охватывают функции настройки на требуемый канал, QPSK-демодуляцию и прямую коррекцию ошибок. Транспортный уровень и подуровень ограниченного доступа охватывают демультиплексирование различных ТВ-программ, выделение пакетов видео, аудио, данных, а также доступ к закрытым программам. Сетевой уровень охватывает декодирование видео, звука и данных, а также управление электронным руководством по программам, служебной информации и прочим сетевым услугам. Представительный уровень охватывает оконечные тракты и интерфейсы пользователя, а прикладной – информационные приложения, связанные с использованием изображения, звука и данных.