Таким образом, при выборе АЦП важно учесть такие характеристики как: разрядность, частота дискретизации, SINAD, SNR, SFDR, наличие управляемых логических входов (Dither, Randomizer, PGA - усилитель с программируемым коэффициентом усиления), а также обратить внимание на их цену и доступность.
Analog Devices и Linear Technology - мировые лидеры в производстве интегральных схем (ИС) для преобразования сигналов. ИС AD9461 и LTC2208 - первые представители нового семейства быстродействующих 16-битных АЦП, обеспечивающие высокую максимальную частоту дискретизации 130 МГЦ, удобные в применении, имеющие высокие динамические характеристики и при этом весьма конкурентоспособную цену. Технические параметры выбранных 16-битных АЦП представлены в таблице 7.1.
Таблица 7.1 - Основные технические параметры выбранных АЦП
Кроме того, АЦП снабжены дифференциальным низковольтным интерфейсом (LVDS), включающем также выход сигнала тактирования, что способствует упрощению схемотехники, а также уменьшению влияния внешних помех на точность АЦП.
Из таблицы 7.1 видно, что наилучшими характеристиками обладает аналого-цифровой преобразователь LTC 2208 фирмы Linear Technology.
В сигнале, преобразованном из цифровой формы в аналоговую, также будет присутствовать шум и составляющие искажений. Искажения могут быть определены в терминах нелинейных искажений, динамического диапазона, свободного от помех (SFDR), интермодуляционных искажений (IMD). Двухтональные интермодуляционные искажения измеряют, подавая два спектрально чистых синусоидальных сигнала с частотами f1 и f2, обычно довольно близкими друг к другу. Амплитуда каждой компоненты устанавливается на 6 дБ ниже полной шкалы для того, чтобы АЦП не входил в ограничение при совпадении сигналов по фазе. Значение интермодуляционных искажений выражается в дБс относительно уровня любой из двух первоначальных частот, а не их суммы. Под нелинейными искажениям понимается отношение высших гармоник к гармонике основной частоты, на которой восстановлен чистый (теоретически) синусоидальный сигнал. Эти искажения являются наиболее общей характеристикой искажений. Таким образом, при выборе ЦАП важно учесть такие характеристики как: SFDR, IMD (интермодуляционные искажения), NPSD (спектральная плотность мощности шума), рассеиваемая мощность, напряжение питания, а также обратить внимание на их цену и доступность.
Технические параметры выбранных 16-битных ЦАП представлены в таблице 7.2.
Таблица 7.2 - Основные технические параметры выбранных ЦАП
Из таблицы 7.2 видно, что наилучшими характеристиками обладает цифро-аналоговый преобразователь AD 9726 фирмы Analog Devices.
Программируемая логическая интегральная схема (ПЛИС) - электронный компонент, используемый для создания цифровых интегральных схем. В отличие от обычных цифровых микросхем, логика работы ПЛИС не определяется при изготовлении, а задаётся посредством программирования. ПЛИС появились полтора десятилетия назад как альтернатива программируемым логическим матрицам (ПЛМ). От последних ПЛИС отличаются как по архитектуре, так и по технологии изготовления.
ПЛМ представляет собой матрицу многовходовых (несколько десятков входов) логических элементов, соединяемых перемычками в виде МОП-транзисторов с плавающим затвором. CPLD (Сomplex Programmable Logic Device - сложные программируемые логические устройства) содержат относительно крупные программируемые логические блоки - макроячейки, соединённые с внешними выводами и внутренними шинами и отличаются тем, что несколько ПЛМ собраны на одном кристалле и объединены программируемым полем связей.
ПЛИС представляет собой матрицу маловходовых логических элементов, триггеров, отрезков линий связи, соединяемых перемычками из полевых транзисторов. Судя по английскому названию - Field Programmable Gate Array (FPGA) - ПЛИС программируются изменением уровня электрического поля (field) в затворах этих транзисторов. Затворы всех “программирующих” полевых транзисторов подключены к выходам триггеров одного длинного сдвигового регистра, который заполняется при программировании ПЛИС. Некоторые из участков этого регистра могут также выполнять роль ячеек ПЗУ. Прошивка обычно хранится в ПЗУ, стоящем рядом с ПЛИС и после включения питания или по сигналу сброса она автоматически переписывается в программирующий сдвиговый регистр ПЛИС. Этот процесс называется конфигурированием ПЛИС.
По сравнению с CPLD, ПЛИС выигрывают:
· в неограниченном количестве перепрограммирований;
· в логической емкости, в том числе в удельной емкости вентилей;
· в малом энергопотреблении;
Как правило, ПЛИС имеют на два - три порядка большую емкость в числе эквивалентных логических вентилей, чем CPLD и также как статическое ОЗУ, почти не потребляют энергии при отсутствии переключений. Кроме того, у ПЛИС на порядок выше надежность (ниже интенсивность отказов), чем у CPLD.
Фирма Altera принадлежит к числу родоначальников ПЛИС и одним из самых крупных их производителей. При выборе ПЛИС важно учесть такие характеристики как: память случайного доступа (RAM), максимальное количество входных/выходных контактов (Maximum user I/O pins), а также обратить внимание на их цену и доступность.
В таблице 7.2 представлено краткое описание основных технических особенностей ПЛИС серии EP2 выпускаемой фирмой Altera.
Таблица 7.2 - Основные технические параметры ПЛИС фирмы Altera
Программисты приняли решение, что для реализации блока ЦОС ПЧ подойдет ПЛИС EP2C8.
7.1.3 Метод передачи цифровых данных (LVDS)
Передача цифровых данных как бы не требовала экстремально высокой производительности, тем не менее, должна требовать минимальной мощности потребления, обеспечивать минимум внутренних шумов, быть относительно не чувствительной к внешним шумам и быть естественно дешёвой.
LVDS (Low Voltage Differential Signaling) означает передачу цифровых данных дифференциальными сигналами со скоростью до сотен и даже нескольких тысяч мегабит в секунду. Это направление передачи данных использует очень малые перепады дифференциального напряжения (до 350 мВ) на двух линиях печатной платы.
Дифференциальный метод передачи используется в LVDS, поскольку обладает меньшей чувствительностью к общим помехам, чем простая однопроводная схема. Этот метод передачи использует двухпроводную схему соединения с формированием перепадов инверсией тока или напряжения в отличие от однопроводной простой схемы передачи информации. Достоинством дифференциального метода является то, что шумы, наводящиеся на двухпроводной линии, симметричны и не нарушают дифференциального сигнала, к которому чувствителен приёмник. Метод так же обладает меньшей чувствительностью к искажениям сигнала от внешних магнитных полей.
Поскольку дифференциальные технологии, в том числе и LVDS, менее чувствительны к шумам, то в них возможно использование меньших перепадов напряжения. Это достоинство является решающим, так как невозможно достичь высокой производительности и минимума потребляемой мощности одновременно без снижения перепадов напряжения на входе. Формирование малых перепадов напряжения на выходе передатчика достижимо при более высоких скоростях. Токовый режим передатчика обеспечивает очень низкий, всегда постоянный уровень потребления во всём диапазоне частот. Выбросы фронтов передатчика очень незначительны, поэтому ток потребления не увеличивается экспоненциально при увеличении скорости передачи. Упрощенная схема соединения LVDS
передатчика с приёмником через 100 Ом линию приведена на рисунке 7.6.
Рисунок 7.6 - Упрощенная схема соединения LVDS передатчика с приёмником
LVDS выход, спроектированный фирмой National Semiconductor, содержит источник тока (номиналом 3.5 мА) нагруженный на дифференциальную пару линии передачи. Основной приёмник имеет высокий входной импеданс, поэтому основная часть выходного тока передатчика протекает через 100 Ом резистор терминатора линии, создавая на нём падение напряжения до 350 мВ, приложенное к входу приёмника. При переключении выхода передатчика направление протекания тока через терминатор меняется на противоположное, обеспечивая достоверные логические состояния “0” или “1”.
Поскольку среда распространения LVDS сигналов состоит из двухпроводной линии на печатной плате с легко контролируемым дифференциальным импедансом, то такая линия должна заканчиваться терминатором с импедансом данной линии для завершения токовой петли и подавления искажений коротких импульсов. При отсутствии согласования, сигналы отражаются от несогласованного конца линии и могут интерферировать с другими сигналами. Правильное согласование так же подавляет нежелательные электромагнитные наводки, обеспечивая оптимальное качество сигналов.
Для предотвращения отражений, LVDS требует применения терминатора в виде простого резистора с расчётным значением сопротивления равным дифференциальному сопротивлению линии распространения. Наиболее часто используется 100 Ом среда и терминатор. Этот резистор заканчивает токовую петлю и предотвращает отражения сигналов, он располагается на конце линии передачи, по возможности на минимальном расстоянии от входа приёмника.