Смекни!
smekni.com

Измеритель коэффициента шума (стр. 6 из 15)

Рисунок 4.4 - Структурная схема ИКШ N8973A

В преобразователе частот (блок радиоприемного тракта) спектр входного сигнала сначала переносится вверх на первую промежуточную частоту 3921,4 МГц, а затем, вниз на вторую ПЧ равную 321,4 МГц. После фильтрации паразитных каналов преобразования сигнал снова попадает на смеситель, где его спектр переносится на третью ПЧ равную 21,4 МГц. Выбор входной частоты осуществляется перестройкой синтезированного ЖИГ - генератора, который служит первым гетеродином. После этого сигнал усиливается, фильтруется и попадает в блок цифровой обработки сигнала ПЧ (ЦОС ПЧ), где оцифровывается, фильтруется и детектируется. Оцифрованный сигнал проходит через цифровой ППФ с шириной полосы пропускания 4 МГц. С выхода цифрового фильтра сигнал поступает на процессор цифровой обработки сигналов.

Блок сбора данных и управления предназначен для управления работой блока ЦОС ПЧ, перестраиваемого гетеродина, модулятора ГШ и обмена данных с ЭВМ. ЭВМ обеспечивает отображение результатов измерений и выполняет ряд вычислительных функций.

5. Выбор и обоснование структурной схемы ИКШ

5.1 Структурная схема, описание работы

При выборе схемы построения ИКШ будем опираться на результаты обзора современных измерителей коэффициента шума и технические требования, предъявляемые в задании на проектирование (диапазон рабочих частот, полоса пропускания фильтров ПЧ по уровню -3 дБ). Таким образом, структурная схема ИКШ будет выглядеть так, как показано на рисунке 1.1.

Рисунок 5.1 - Упрощенная структурная схема ИКШ

ИКШ состоит из следующих основных блоков:

· преобразователь частоты;

· блок синтезаторов частот;

· ЦОС ПЧ (блок цифровой обработки сигнала ПЧ);

· блок управления;

· модулятор ГШ;

· блок питания.

Преобразователь частот осуществляет перенос спектра шумового сигнала из входного диапазона 0,01…4 ГГц на промежуточную частоту, в блоке производится необходимое усиление и фильтрация сигнала. В качестве сигналов гетеродинов используются сигналы из блока синтезаторов частот.

В блоке цифровой обработки (ЦОС ПЧ) сигнал оцифровывается, фильтруется и детектируется. Блок управления предназначен для управления работой блоков ЦОС ПЧ, синтезаторов частот, модулятора ГШ и обмена данных с ЭВМ. ЭВМ обеспечивает панорамное отображение результатов измерений и выполняет ряд вычислительных функций.

Модулятор ГШ используется для управления полупроводниковым генератором шума, а также для обеспечения питания ГШ стабилизированным напряжением. Укрупненная структурная схема ИКШ представлена на рисунке 5.2.

Рисунок 5.2 - Укрупненная структурная схема ИКШ

Для преобразователя частоты выбрана супергетеродинная схема с тройным преобразованием частоты, аналогичная примененной в преобразователе частот ИКШ N8973A фирмы Agilent. Первое преобразование выполняется при качании частоты первого гетеродина и фиксированной промежуточной частоты, во втором и третьем преобразовании - частоты гетеродинов и промежуточные частоты фиксированы. Первая промежуточная частота равна 9470 МГц, вторая 1070 МГц, третья 70 МГц. Все смесители работают на основной гармонике входного сигнала и гетеродина. Вид частотных преобразований смесителей представлен в таблице 5.1.

Таблица 5.1 - Частотные преобразования смесителей блока РПТ

Номер Входные частоты (
)
Частоты гетеродина (
)
Преобразование
, МГц
1 10 МГц - 4 ГГц 9,48 ГГц - 13,47 ГГц
9470
2 9470 МГц 8400 МГц
1070
3 1070 МГц 1000 МГц
70

При первом преобразовании частоты используется высокая промежуточная частота (Fпч1 = 9470 МГц), что позволяет подавить частоты зеркального канала (Fзерк = 18,95 ГГц - 26,94 ГГц) ФНЧ с фиксированной настройкой, без влияния на анализируемый входной сигнал (см. рисунок 5.3).

Рисунок 5.3 - Первое преобразование частоты блока РПТ

При втором преобразовании частоты, сигнал переносится на более низкую промежуточную частоту (Fпч2 = 1070 МГц). Частота зеркального канала (Fзерк2 = 7,33 ГГц) подавляется полосовым фильтром первой промежуточной частоты (см. рисунок 5.4).

Рисунок 5.4 - Второе преобразование частоты блока РПТ

При третьем преобразовании частоты, сигнал переносится на третью промежуточную частоту (Fпч3 = 70 МГц). Частота зеркального канала (Fзерк3= 930 МГц) подавляется полосовым фильтром второй промежуточной частоты (см. рисунок 5.5).

Рисунок 5.5 - Третье преобразование частоты блока РПТ

Функциональная схема преобразователя частоты (блок радиоприемного тракта) представлена на рисунке 5.6.

Рисунок 5.6 - Функциональная схема преобразователя частоты (блок РПТ)

Шумовой сигнал из диапазона входных частот 10 - 4000 МГц поступает на входной управляемый аттенюатор. Входной аттенюатор предназначен для регулирования уровня мощности входного сигнала. Ослабление аттенюатора регулируется в диапазоне 0 дБ - 60 дБ с шагом 20 дБ. Усиленный малошумящим усилителем сигнал переносится вверх на частоту

МГц. С помощью входного ФНЧ осуществляется подавление частот выше 5 ГГц, которые могут ввести усилители преобразователя в насыщение. На частоте
сигнал усиливается и его спектр переносится вниз на частоту
МГц. Полосно-пропускающий фильтр, расположенный перед вторым смесителем подавляет паразитные каналы второго преобразования. Третий смеситель осуществляет частотное преобразование на третью промежуточную частоту
МГц. На частоте
сигнал усиливается, проходит через набор переключаемых полосно-пропускающих фильтров, определяющих полосу измерения, и поступает в блок цифровой обработки, где оцифровывается, фильтруется и детектируется. На выходе АЦП получается двоичное представление аналогового сигнала, которое затем обрабатывается арифметически цифровым сигнальным процессором (DSP).

5.2 Выбор элементной базы блока РПТ-04, синтезатора частот и гетеродинов

Результирующий коэффициент шума преобразователя частоты определяет собственный коэффициент шума ИКШ и не должен превышать требуемый в задании. По техническому заданию требуется обеспечить собственный коэффициент шума измерителя - не более 8 дБ. Выбор элементной базы блока РПТ-04 начнем с активных элементов.

К техническим характеристикам первого смесителя предъявляются особенно жесткие требования, так как:

· первые каскады цепи очень сильно влияют на коэффициент шума всей цепи в целом, следовательно, нужно подобрать смеситель с минимально возможными вносимыми потерями и минимально возможным значением коэффициента шума;

· требуется выбрать смеситель с достаточно хорошим подавлением комбинационных составляющих.

Что же касается второго и третьего смесителя, то к ним предъявляются менее жесткие требования. При выборе второго и третьего смесителей важно учесть вносимые потери, а также обратить внимание на их цену и доступность.

К техническим характеристикам усилителей предъявляются следующие требования:

· возможность работы в данном диапазоне частот;

· как можно меньший коэффициент шума;

· достаточный коэффициент усиления;

· доступность и низкая цена.

Технические параметры выбранных смесителей и усилителей представлены в таблице 5.2.

Таблица 5.2 - Технические параметры активных элементов блока РПТ-04

№ п/п Наименование узла, модуля, блока Основные технические параметры
1 Измеритель коэффициента шума
2 Плата преобразователя частот (блок РПТ-04) в составе:
3 Смеситель 1M1R-920SES § коэффициент передачи -6 дБ;§ коэффициент шума 8 дБ;§ КСВН вх/вых <1.5.
4 Смеситель 2HMC410M § коэффициент передачи -8 дБ;§ коэффициент шума 8 дБ;§ КСВН вх/вых <1.5.
5 Смеситель 3HMC377QS § коэффициент передачи +14 дБ;§ коэффициент шума 11 дБ;§ КСВН вх/вых <1.5.
6 Усилитель ВЧSBW-5089 § коэффициент усиления 15 дБ;§ коэффициент шума 4.5 дБ.
7 Усилитель ПЧ1HMC-441L § коэффициент усиления 17 дБ;§ коэффициент шума 5 дБ.
8 Усилитель ПЧ2SBF-4089 § коэффициент усиления 20 дБ;§ коэффициент шума 2.5 дБ.
9 Усилитель ПЧ3LT5514f § коэффициент усиления 22.3 дБ;§ коэффициент шума 7.7 дБ.

К техническим характеристикам пассивных элементов схемы (фильтрам, аттенюаторам, переключателям) относится вносимое затухание, чем оно меньше, тем меньше значение коэффициента шума всего тракта.