В современных сложных объектах, как правило, выходной сигнал объекта зависит не от одного входного сигнала, как в случае с кривой разгона, а от нескольких входных сигналов, т.е. объект управления имеет сложное переплетение взаимосвязей входных и выходных сигналов.
Рис. 1. Схема объекта, состоящего из нескольких взаимосвязанных входных-выходных сигналов
Для идентификации таких сложных объектов используется метод регрессионного анализа с проведением активного эксперимента на базе теории математического планирования эксперимента.
Назначение этой теории – значительно сократить количество экспериментальных опытов и упростить расчеты, необходимые для получения уравнения взаимосвязи выходного сигнала с несколькими входными сигналами – уравнения регрессии.
Сокращение числа необходимых экспериментов в теории математического планирования эксперимента достигается за счет одновременного изменения всех входных сигналов (факторов), а упрощение расчетов получается за счет того, что изменение входных сигналов (факторов) нормируется, т.е. величины
. Пусть – зависит от 2-х входных факторов.Рис. 2. Схема исследования объекта методом регрессионного анализа для двух входных сигналов (факторов)
Точка О – номинальный режим работы объекта. Нормализация происходит за счет того, что начало координат переносится в точку О на
.Рис. 3. Схема центрального плана полного факторного эксперимента для двух входных сигналов (факторов)
Здесь (рис. 3) изображен план проведения опытов для изучения зависимости
. Число опытов равно 4=22 – полный факторный эксперимент; Для k входных факторов число опытов в факторном эксперименте: N=2k. При k=3 N=8; k=4, N=16 и т.д.На приведенном выше рис. 3. изображен центральный (точка О – в центре) ортогональный полный факторный план эксперимента для 2-х входных факторов.
Таблица 1. Полный факторный эксперимент для k=2.
№ опыта | |||
1 | +1 | +1 | |
2 | -1 | +1 | |
3 | -1 | -1 | |
4 | +1 | -1 |
Свойство плана, когда, называется ортогональностью плана.
Таблица 2. Полный факторный эксперимент для k=3.
№ опыта | ||||
1 | +1 | +1 | +1 | |
2 | -1 | +1 | +1 | |
3 | -1 | -1 | +1 | |
4 | +1 | -1 | +1 | |
5 | +1 | +1 | -1 | |
6 | -1 | +1 | -1 | |
7 | -1 | -1 | -1 | |
8 | +1 | -1 | -1 |
В полном факторном плане экспериментов число опытов резко возрастает в зависимости от числа входных факторов: k=4 N=16; k=5, N=32; k=6, N=64 опыта. Поэтому для сокращения числа опытов с минимальной потерей информации применяются сокращенные планы – дробные реплики. Если планы содержат половину опытов полного факторного эксперимента, то такой план носит название полуреплики.
Таблица 3. Пример полуреплики для k=4 (ПФЭ=16)
№ опыта | ||||
1 | +1 | +1 | +1 | +1 |
2 | +1 | -1 | +1 | -1 |
3 | -1 | +1 | +1 | -1 |
4 | -1 | -1 | +1 | +1 |
5 | +1 | +1 | -1 | -1 |
6 | +1 | -1 | -1 | +1 |
7 | -1 | +1 | -1 | +1 |
8 | -1 | -1 | -1 | -1 |
Используют также ¼ реплики от полного факторного эксперимента.
Уравнение взаимосвязи входного и выходного сигналов – уравнение регрессии – записывается в виде алгебраического полинома 1-ой и 2-ой степени в следующем виде:
1-ой степени:
xвых = b0 +b1x1+b2x2;
с учетом взаимодействия входных факторов для 2-х входных факторовx1 и x2:
xвых = b0 + b1x1 + b2x2 + b12x1 x2 .
Полином второй степени – уравнение регрессии:
Естественно, это уравнение более точно описывает взаимосвязь xвых – функции отклика – с входными факторами (сигналами) объекта.
Задача идентификации объекта управления (ОУ) методом регрессивного анализа сводится к выбору порядка математической модели – уравнения регрессии – и определению коэффициентов b0, b1, b2, b12 и т.д. в этом уравнении регрессии. При определении этих коэффициентов используется метод наименьших квадратов, в котором определяется наименьшая сумма отклонений в квадрате (2-ой степени) между реально полученным в эксперименте выходным сигналом и выходным сигналом, рассчитанным (предсказанным) по уравнению регрессии, т.е. ищут минимум функции:
Минимум функции Ф достигается в том случае, когда первая частная производная (тангенс угла наклона к впадине) равна нулю, т.е.
.Рассмотрим пример использования метода наименьших квадратов. Пусть выходной сигнал (функция отклика) зависит от одного фактора (входного сигнала). Активно проведено n экспериментов. Задана
и получена – результатов экспериментов. Общий вид уравнения регрессии 1-го порядка для примера:xвых = b0 + b1x1
Методом наименьших квадратов ищем минимум функции Ф:
Для получения минимума этой Ф приравниваем к нулю частные производные
.Для удобства получения частных производных введем фиктивную переменную x0=1 и функцию Ф запишем:
x0=1 можно убрать. Тогда
Решая эту систему алгебраических уравнений (можно методом Крамера), находим:
Проверка идентичности математической модели – уравнения регрессии исследуемого объекта проводится по нескольким критериям адекватности и идентичности модели.
Поскольку результаты опытов в эксперименте заранее точно предсказать невозможно, то обработка и сами результаты связаны с неопределенностью или вероятностью. Вероятность изменяется в пределах: 0 – события быть не может, 1 – событие произойдет обязательно (день-ночь). При большом числе параллельных (одинаковые условия) опытов вероятность может быть задана в виде функции распределения вероятностей (рис. 4.):
Рис. 4. Схема нормального (гауссовского) закона распределения вероятностей
На практике чаще всего используется так называемое нормальное (гауссовское) распределение вероятностей.