Смекни!
smekni.com

Зеркальные антенны (стр. 3 из 4)

В отличие от рассмотренного «волноводно-рупорного» облуча­теля «волноводно-вибраторный» (рис. 10в) и «волноводно-щелевой» (рис.10г) облучатели питаются волноводами, не затеняющи­ми пространство.

Вибраторы, возбуждаемые излучением волновода (рис.10в), укрепляются на металлической пластинке, которая, будучи перпендикулярной вектору Е, не возмущает поля. При раз­мерах системы, указанных на рисунке (при этом первый вибратор несколько короче, а второй - несколько длиннее полуволны), обеспечивается однонаправленное излучение на зеркало. Фазовый центр лежит между вибраторами.

Рис.10

На практике действие неравномерности облуче­ния зеркала либо утечки энергии облучателя за его края бывает значительнее, чем это учтено в приближенном расчете, результаты которого приводились. К тому же нужно принимать во внимание фазовые отклонения, вызываемые неточностью изготовления зеркал. Поэтому обычно не удается достигнуть указанного выше максимального значения x=0,83. При допустимых фазовых отклонениях коэффициент использования может составлять

x=0,4÷0,6.

Облучатели для параболи­ческих цилиндров могут состав­ляться из нескольких полувол­новых вибраторов, располагае­мых на фокальной линии. Это, в частности, могут быть щеле­вые вибраторы, питаемые вол­новодом.

Рис. 11

Параболическое зеркало может использоваться в качестве антенны в весьма широком диапазоне частот, который снизу ограни­чивается уменьшением относительных размеров раскрыва и усиле­нием краевых эффектов, а сверху - трудностью соблюдения тре­буемых допусков конструкции. Поэтому рабочая полоса антенны оп­ределяется условиями согласования с линией передачи. При этом существенна «реакция зеркала» на облучатель. Предположим, что облучатель был согласован с линией без зеркала. Тогда в результа­те отражения от зеркала в питающей линии появится обратная волна, т. е. возникнет некоторое рассогласование. Если же облуча­тель согласован при наличии зеркала на фиксированной частоте, то реакция зеркала проявится при частотных отклонениях. В ряде случаев используются различные приемы частичного устранения реакции зеркала. Например, делается отверстие в его средней части (рис.11а) или помещается там металлический диск (рис. 11б). Диск при расстоянии от зеркала около четверти волны создает (как пассивная антенна) поле излучения, находящееся в противофазе с полем, подлежащим компенсации; нужная интен­сивность излучения диска достигается подбором его размера. Впрочем, существуют приближенные формулы для диаметра диска d, и его расстояния от зеркала а (см. рис.11,), при которых ком­пенсация реакции зеркала должна быть наилучшей:

Для устранения реакции зеркала облучатель может быть также вынесен из области раскрыва (рис. 11в).

Путем поперечного смещения облучателя из фокуса осущест­вляется качание луча параболической антенны. Это схематически показано на рис. 12. Вообще процесс сопровождается расширени­ем основного максимума и увеличением бокового излучения, но при небольших углах качания указанные побочные эффекты невелики.

Рис. 12 Рис. 13

Отметим еще, что для облегчения веса и уменьшения действия ветра антенные зеркала часто делают решетчатыми, перфорирован­ными и т. п. (рис.13). При этом необходимо, чтобы решетка содержала металлические элементы, параллельные вектору Е, а расстояние между ними было существенно меньше половины длины волны. Некоторое представление о действии промежутка между элементами решетки или также отверстия в листе дает аналогия с коротким участком запредельного волновода: излучение проходит через зеркало с отверстиями, но значительно ослабляется. Обычно для оценки действия решетчатых и подобных зеркал пользуются решениями задач дифракции на бесконечных плоских периодиче­ских системах.

5. Другие зеркальные антенны

Стремление улучшить параболические зеркальные антенны, а также расширить их функции или добиться некоторых специальных эффектов привело к созданию целого ряда зеркальных антенн разных типов. Рассмотрим некоторые из них.

К числу зеркальных следует отнести рупорно-параболи­ческую антенну (рис.14а), которая образована частью поверх­ности параболоида вращения, соединенной с пирамидальным рупо­ром, так что его фазовый центр находится в фокусе зеркала. В этой конструкции осуществлено полное 'вынесение облучателя из поля излучения зеркала и очень мало обратное излучение за края рас­крыва. Рупорно-параболическая антенна имеет коэффициент ис­пользования раскрыва порядка х=0,65÷0,75. Это - совершенная и сравнительно простая 'конструктивно, но несколько громоздкая антенна: угол раскрыва рупора должен составлять 30÷45°, что при практически используемых размерах раскрыва приводит к зна­чительным размерам всей антенны

Основными достоинствами рупорно-параболической антенны являются широкий рабочий диапазон частот, в пределах которого обеспечивается весьма высокая степень согласования с питающей линией, и чрезвычайно низкий уровень бокового и обратного излу­чений. Рабочий диапазон рупорно-параболических антенн ограни­чивается снизу только размерами поперечного сечения питающего волновода, а сверху - точностью выполнения отражающего пара­болического зеркала. В настоящее время известны, например, рупорно-параболические антенны, используемые в диапазоне 3000 ÷11 000 Мгц. Коэффициент отражения от входа антенны не превышает при этом 1,5-2%.

Низкий уровень задних лепестков рупорно-параболических антенн является весьма ценным качеством в условиях радиорелейной линии, где этим определяется хорошее «защитное действие» антенны. Например, при кнд порядка 40 дб уровень задних лепест­ков может быть около 70 дб. Следует подчеркнуть, что обычные параболические антенны при таком же кнд имеют задние лепестки порядка 50 дб. Благодаря низкому уровню боковых и задних лепестков переходное затухание между двумя соседними рупорно-параболическими антеннами очень велико.

На рис. 14б схематически изображена сегментно параболическая антенна в двух вариантах питания.

Рис. 14

Антенна образована поверхностью параболического цилиндра и двумя близко расположенными плоскостями. Облучателем может слу­жить открытый конец волновода или вертикальный вибратор, сое­диненный с коаксиальной линией и снабженный контррефлекто­ром. Если электрический вектор перпендикулярен плоскостям, между ними возбуждается волна ТЕМ, а при параллельном пло­скостям электрическом поле — волна Н01.Чтобы высшие поля заведомо отсутствовали, расстояние между плоскостями в первом случае не должно превышать l/2, а во втором — lа. На рис.14в показано применение сегментно-параболической антенны в каче­стве облучателя зеркала в виде параболического цилиндра.

Зеркальные антенны применяются при построении так называе­мых перископических систем. У подножия мачты располагается параболическое зеркало, излучение которого на­правлено в зенит и отражается в горизонтальном направлении помещенным на мачте плоским зеркалом. Очевидно, что такая система может использоваться вместо того, чтобы помещать параболиче­ское зеркало на вершину мачты, для чего требуется вести туда длинный волноводный тракт.

При построении перископических систем находит также при­менение принцип фокусировки. Поскольку - в аспекте геометрической опти­ки такое зеркало обладает свойством концентрировать излуче­ние в одном из фокусов, когда в другом находится точечный ис­точник, то на практике один из фокусов совмещают с фазовым центром облучателя эллипсоида, а в области другого располагают переизлуча­тель. Благодаря фокусировке по­вышается кпд передачи от излу­чателя к переизлучателю (умень­шается «переливание» энергии за края переизлучателя), что ве­дет к возрастанию коэффициента усиления перископической системы. Принцип фокусировки может быть реализован и иным путем: «сужение» потока энергии в области переизлучателя достигается и при параболическом излучателе при вынесении первичного облу­чателя из фокуса параболоида. Дальнейшее улучшение перископи­ческой системы может быть достигнуто, если вместо плоского пере­излучающего зеркала взять параболическое.

В связи с проблемой качания луча в широком угле возрастает роль сферических зеркал. Сферическая поверхность в неко­торой части близка к параболической, так что при облучении ее близко расположенным источником формируется относительно узкий отраженный луч. На рис.15а показано два расположения облучателя вблизи сферической поверхности; направления форми­руемого луча обозначены стрелками. Вращение облучателя отно­сительно центра сферы вызывает поворот луча на тот же угол, причем в силу неизменности условий отражения (в пределах опре­деленного угла качания) ширина луча практически не меняется. Однако коэффициент использования поверхности зеркала оказы­вается низким.