Смекни!
smekni.com

Замок кодово-сенсорный (стр. 2 из 4)

Описанная структура представляет собой наиболее общий случай системы управления зданием. Конкретная реализация идеологии «интеллектуального здания» в значительной мере зависит от требований заказчика.

Однако подобного рода разработки требуют не только больших временных затрат, но и финансовых вливаний. Разрабатываемый кодово-сенсорный замок в какой-то степени позволяет не допускать бесконтрольного посещения какого-либо объекта.


2. ВЫБОР И ОБОСНОВАНИЕ СТРУКТУРНОЙ СХЕМЫ

2.1. Источник питания

Структурная схема источника питания представлена на рис. 2.1.

Рис. 2.1. Структурная схема блока питания

ПТ – понижающий трансформатор. Устанавливает уровень требуемого выходного напряжения. Снижает электробезопасность источника питания и потребителя.

ВБ – выпрямительный блок. Используют элементы (в основном полупроводниковые диоды) обладающие вентельными свойствами, то есть односторонней проводимостью. Преобразуют синусоидальное напряжение в пульсирующее однополярное, которое содержит в своем составе постоянную составляющую, первую и высшую гармонические составляющие.

СФ –сглаживающий фильтр. Предназначен для уменьшения пульсации выпрямленного напряжения.

С – стабилизатор напряжения. Исключает влияние внешних и внутренних факторов на стабильность выходного напряжения (колебание входного напряжения, температуры, влажности, «старения» элементов).

Н – нагрузка. Может носить активный, емкостной или индуктивный характер, который существенно влияет на работу источника питания.


2.2. Кодово-сенсорный замок.

Рис. 2.2. Структурная схема замка

СП – сенсорная панель. Служит для набора правильной комбинации кода, чтобы открыть замок.

ИП – источник питания. Предназначен для питания замка.

П – преобразователь. Основное его предназначение – преобразование правильной последовательности кода, набираемой на сенсорной панели в сигнал для срабатывания реле.

Р – реле. Используется для приведения в движение при правильном наборе кода запорного механизма.

ЗМ – запорный механизм. Служит для закрытия и открытия двери.


3. ВЫБОР И ОБОСНОВАНИЕ ПРИНЦИПИАЛЬНОЙ СХЕМЫ

3.1. Источник питания.

Для большинства цифровых устройств необходим источник питания. При большом потреблении мощности использование как источника гальванических батарей неэкономично. В этом случае постоянное напряжение получают путём трансформирования и выпрямления напряжения сети. Для этой цели в данной приборе используем (см. приложение ФИРЭ.ИИТ.КП602916/с.003) двухполупериодный выпрямитель со средней точкой трансформатора.

К достоинствам можно отнести - используются обе половины переменного напряжения. При этом вырабатывается пульсирующее колебание, в котором отсутствующие в однополупериодной схеме полуволны инвертируются и появляются между положительными полуволнами. Коэффициент пульсации составляет 0,67, для сравнения коэффициент пульсации однополупериодного выпрямителя 1,57.

Чтобы уменьшить пульсации, на выходе выпрямителя, в схему включаем сглаживающий Г - образный RC - фильтр.

Коэффициент сглаживания показывает, во сколько раз фильтр уменьшает пульсации выпрямленного напряжения.

,

где

,
,
,
- коэффициенты пульсаций и амплитудные значения напряжения на входе и выходе фильтра.

Схемы стабилизации используются во многих, но не во всех источниках питания. Для обеспечения устойчивости выходного напряжения постоянного тока в условиях изменяющейся нагрузки, колебаниях напряжения в сети используем стабилизатор в виде интегральной микросхемы.

Включим в схему резистор R1 являющимся датчиком тока в схеме защиты от перегрузок.

На выходе схемы установим конденсатор С2, служащий для снижения уровня пульсаций выходного напряжения, а так же повышения устойчивости стабилизатора.

С помощью переменного резистора R5 можно будет производить более точную регулировку выходного напряжения.

3.2. Кодово-сенсорныйзамок

Для приведения в действие исполнительного механизма замка дос­таточно в определенной последовательности дотронуться пальцем сен­соров Е2...Е5. При этом необходимо касаться во время набо­ра кода сенсора Е1 либо пар сенсоров: Е2, Е1; ЕЗ, Е1; Е4, Е1; Е5, Е1. При касании сенсоров Е2, Е1 положительное напряжение через цепь Rl, VD1, сопротивление кожи, VD2, R2 поступит на вход элемента DD1.1. В результате триггер DD3.1 установится в «единичное» состоя­ние и подготовит элемент DD5.2. В связи с этим после касания сенсо­ров ЕЗ, Е1 триггер DD3.2 также установится в «единичное» состояние.

Аналогично касание сенсоров El, E4 и El, E5 приведет к установке в «единичное» состояние соответственно триггеры DD4.1 и DD4.2. Уро­вень логической 1 на прямом выходе триггера DD4.2 открывает ключ VT1, и реле К1 своими контакторами включает исполнительный меха­низм замка. В данном устройстве элементы DD6.1...DD6.3 служат для сброса всех триггеров при нарушении последовательности набора. Для этой же цели служат сенсоры Е6...Е10, при касании к любому из них все триггеры обнуляются.

Цепь R12, С6 играет двойную роль. Она предотвращает ложное сраба­тывание замка при включении питания (устанавливает триггеры в «нуле­вое» состояние) и обеспечивает включение исполнительного механизма на определенное время, задаваемое постоянной времени цепи R12, Сб. Этого времени должно быть достаточно для того, чтобы засов замка, связанный с сердечником электромагнита, приготовился защелкнуться. Помещение закрывают, захлопывая двери, аналогично некоторым типам механических замков. Цепь Rl3, C7 предотвращает возможный сброс триг­гера DD4.2 при включении электромагнита, поскольку замок и электро­магнит имеют общее питание.

Устройство собрано на микросхемах КМОП структуры, поэтому характеризуется малым потреблением электроэнер­гии. В проектируемом кодовом замке используем микросхемы К561ЛА7, К561ЛА9, К561ЛЕ5, К561ТМ2.

В основе всех цифровых микросхем КМОП находятся элементы И, И, ИЛИ и коммутативный ключ. С помощью КК реализуются выходы с третьимсостоянии очень большого выходного импеданса Z(практически разомкнуто). Полевые транзисторыможно соединять последовательно «столбиком», поэтому элементы И, ИЛИ строятся по разным схемам.

Для КМОП принято, чтобы 1 отображалась высоким уровнем, а 0 – низким.

Один двухвходовый канал И из микросхемы К561ЛА7 (см. рис. 3.2.) содержит четыре разноканальных полевых транзистора: VT1 и VT2 – n, а VT3, VT4 – p –канальные. На эквивалентной ключевой схеме выходы А и В получают четыре возможных логических сигнала от переключателей S1 и S2.

Рис. 3.2. Принцип действия микросхемы К561ЛА7

Если последовательно перебрать все комбинации напряжений высоких и низких уровней, поступающих на входы А и В от S1 и S2, и рассмотреть уровни на выходе Q, получим таблицу состояний инвертора И. Когда от S1 и S2 на входы А и В поданы напряжения высокого уровня В, n – каналы транзисторов VT1 и VT2 будут замкнуты, а каналы VT3 и VT4 разомкнуты. На выходе Q окажется напряжение низкого уровня Н. Если на вход А или В поступает хотя бы один низкий уровень, один из каналов VT3 или VT4 оказывается замкнутым и на выходе Q появляется напряжение высокого уровня. В результате вертикальная колонка данных на выходе соответствует функции И. Если на входы А и В подать два положительных импульса, сигнал на выходе Q будет соответствовать площади их совпадения (но с инверсией).

Устройство базового элемента ИЛИ (это один канал микросхемы К561ЛЕ5), как бы обратное по сравнению с элементом И: здесь параллельно соединены n – канальные и последовательно p – канальные транзисторы. На эквивалентной схеме (см. рис.) только совпадение низких входных уровней на входах А и В даст высокий уровень на выходе Q, так как в этот момент замыкаются оба верхних p – канальных транзистора VT1 и VT2. Присутствие хотя бы одного высокого уровня В на входах А, В означает замыкание одного из параллельных n– канальных транзисторов VT3, VT4.

Рис. 3.3. Устройство микросхемы К561ЛЕ5.

Состояние выхода Q в зависимости от уровней, последовательно поступающих от переключателей S1 и S2, дают столбик данных, соответствующих функции ИЛИ. Осциллограмма отклика на выходе ИЛИ показывает, что длительность действия инвертированного сигнала на выходе Q соответствует времени действия обоих входных сигналов.

Кроме указанных на схеме микросхем можно также применить ИМС серий К564, К561. Конденсаторы С1...С5 типа KM, C6...C8 типа К5О-16, , резисторы - МЛТ-0,25.

В качестве реле К1 используется реле РЭС59 (паспорт ХП4.500.021.01) с характеристиками Rном = 130 Ом, Iср = 11 мА, Iош = 1 мА, Uраб = 2.1…2.7 В и временными параметрами tср = 20 мс и tот = 12 мс.

Кодонабиратель представляет собой прямоугольную пластину из изо­лирующего материала, на которой размещены 10 сенсоров. Если длина соединительных проводов между кодонабирателем и корпусом замка имеет значительную длину (более 300 мм), то для повышения помехоу­стойчивости их желательно экранировать.