Смекни!
smekni.com

Заготовки и процесс обработки оптических деталей (стр. 3 из 3)

Припуском называют избыточный (сверх размера детали по чертежу) слой материала заготовки, удаляемый в пpoцессе обработки. Как правило, припуск назначают па сторону в виде слоя материала по толщине. Припуск может быть с двусторонним и односторонним расположением.

Для экономии материала, удешевления обработки детали, обе­спечения эффективности технологического процесса припуск необходимо назначать, исходя из условий получения требуемого качества при обеспечении наименьшей трудоемкости обработки. Увеличенные припуски на обработку приводят к ненужным затратам вре­мени, материала, энергии и абразивного порошка, что увеличивает себестоимость изделия. Уменьшение припуска удешевляет продукцию, однако при занижении припуска затрудняется технология обработки детали, не гарантируется удаление дефектного и трещи­новатого слоя материала, пс обеспечивается требуемая точность и заданная шероховатость поверхностей.

Величину припуска определяют в зависимости от материала заготовки, вида, размеров, величины дефектного слоя на обрабатываемой поверхности, формы детали, требуемой точности и заданной шероховатости, сложности процесса обработки и других факторов.

Puc. 2.4 Схема расположения Рис. 5 Распределение припуска

межоперационных припусков на одну сторону заготовки

Распределение припуска. Различают общие, межоперационные и межпереходные припуски. Общий припуск равен разности размеров заготовки и детали. Межоперационным или межпереходным припуском называют слой материала, сни­маемый при выполнении определенных операций или переходов.

Численно межоперационный припуск равен разности размеров заготовки, полученных при двух смежных операциях. Например, при обработке плоской поверхности пластины (рис. 2.4)

z1= α1 - α2; z2= α2 - α3; z3 = α3 - α4 ,

где z1,z2,z3 — межоперационные припуски; α1, α2, α3, α4 — межоперационные размеры. Общий припуск zо = а1 - а4 определяют как сумму всех межоперационных припусков.

Величину припуска на сторону заготовки определяют из зависимости (рис. 2.5) zB= (Hа + Ta) + (ρa + ξ ), где zB —минимальный припуск па обработку (на сторону); Hа— высота микронеровно­стей, которая зависит от величины зерен абразива, материала ин­струмента и других факторов предыдущей обработки; Ta — глубина дефектного поверхностного слоя; ρa — суммарное значение пространственных отклонений обрабатываемой поверхности; ξ —погрешность на установку заготовки. Последнюю сумму двух слагаемых обычно принимают равной одной пятой от суммы первых двух слагаемых. Если заготовку обрабатывают с двух сторон, то припуск на две стороны удваивают. Значение (Hа + Ta) для прессовок принимают равным 0,3—0,5 мм, после обдирки 0,1—0,3 мм, среднего шлифования 0,02—0,05 мм.

Если при обработке плоских поверхностей припуск снимают и основном равномерными слоями, за исключением удаления по­грешностей угловых размеров, то при обработке сферических поверхностей это выполняют как равномерными, так и неравномерными слоями. Экономически целесообразно снимать припуск, со сферических поверхностей равномерными слоями, но в этом случае для каждого перехода (рис. 2.6) необходимо назначать различные радиусы (R1 — R3) шлифовальников, которые рассчитывают по опреде­ленным формулам

Рис. 2.6. Расположение припуска на сферической поверхности.

Если же припуск снимают инструментами одного радиуса, то толщина удаляемого слоя будет неравномерной, причем для выпуклыx поверхностей она в центре будет максимальной, а для вогнутых — минимальной.

В оптическом производстве теория переходов устанавливает связь между крупностью зерна абразива, толщиной слоя абразива, высотой микронеровностей и дефектного слоя со значениями радиусов кривизны шлифовальников и детали для каждого перехода. Обрабатываемые поверхности заготовок или блоков, у которых отношение диаметра к радиусу кривизны менее 0,8 шлифуют одним инструментом, используя разные микропорошки. Это объяс­няется тем, что изменение радиусов шлифовальников невелико и не сказывается при смене переходов.


ЛИТЕРАТУРА

1. Малов А.Н., Законников Обработка деталей оптических приборов. Машиностроение, 2006. - 304 с.

2. Бардин А.Н. Сборник и юстировка оптических приборов. Высшая школа, 2005. - 325с.

3. Кривовяз Л.М., Пуряев Д.Т., Знаменская М.А. Практика оптической измерительной лаборатории. Машиностроение, 2004. - 333 с.