Припуском называют избыточный (сверх размера детали по чертежу) слой материала заготовки, удаляемый в пpoцессе обработки. Как правило, припуск назначают па сторону в виде слоя материала по толщине. Припуск может быть с двусторонним и односторонним расположением.
Для экономии материала, удешевления обработки детали, обеспечения эффективности технологического процесса припуск необходимо назначать, исходя из условий получения требуемого качества при обеспечении наименьшей трудоемкости обработки. Увеличенные припуски на обработку приводят к ненужным затратам времени, материала, энергии и абразивного порошка, что увеличивает себестоимость изделия. Уменьшение припуска удешевляет продукцию, однако при занижении припуска затрудняется технология обработки детали, не гарантируется удаление дефектного и трещиноватого слоя материала, пс обеспечивается требуемая точность и заданная шероховатость поверхностей.
Величину припуска определяют в зависимости от материала заготовки, вида, размеров, величины дефектного слоя на обрабатываемой поверхности, формы детали, требуемой точности и заданной шероховатости, сложности процесса обработки и других факторов.
Puc. 2.4 Схема расположения Рис. 5 Распределение припуска
межоперационных припусков на одну сторону заготовки
Распределение припуска. Различают общие, межоперационные и межпереходные припуски. Общий припуск равен разности размеров заготовки и детали. Межоперационным или межпереходным припуском называют слой материала, снимаемый при выполнении определенных операций или переходов.
Численно межоперационный припуск равен разности размеров заготовки, полученных при двух смежных операциях. Например, при обработке плоской поверхности пластины (рис. 2.4)
z1= α1 - α2; z2= α2 - α3; z3 = α3 - α4 ,
где z1,z2,z3 — межоперационные припуски; α1, α2, α3, α4 — межоперационные размеры. Общий припуск zо = а1 - а4 определяют как сумму всех межоперационных припусков.
Величину припуска на сторону заготовки определяют из зависимости (рис. 2.5) zB= (Hа + Ta) + (ρa + ξ ), где zB —минимальный припуск па обработку (на сторону); Hа— высота микронеровностей, которая зависит от величины зерен абразива, материала инструмента и других факторов предыдущей обработки; Ta — глубина дефектного поверхностного слоя; ρa — суммарное значение пространственных отклонений обрабатываемой поверхности; ξ —погрешность на установку заготовки. Последнюю сумму двух слагаемых обычно принимают равной одной пятой от суммы первых двух слагаемых. Если заготовку обрабатывают с двух сторон, то припуск на две стороны удваивают. Значение (Hа + Ta) для прессовок принимают равным 0,3—0,5 мм, после обдирки 0,1—0,3 мм, среднего шлифования 0,02—0,05 мм.
Если при обработке плоских поверхностей припуск снимают и основном равномерными слоями, за исключением удаления погрешностей угловых размеров, то при обработке сферических поверхностей это выполняют как равномерными, так и неравномерными слоями. Экономически целесообразно снимать припуск, со сферических поверхностей равномерными слоями, но в этом случае для каждого перехода (рис. 2.6) необходимо назначать различные радиусы (R1 — R3) шлифовальников, которые рассчитывают по определенным формулам
Рис. 2.6. Расположение припуска на сферической поверхности.
Если же припуск снимают инструментами одного радиуса, то толщина удаляемого слоя будет неравномерной, причем для выпуклыx поверхностей она в центре будет максимальной, а для вогнутых — минимальной.
В оптическом производстве теория переходов устанавливает связь между крупностью зерна абразива, толщиной слоя абразива, высотой микронеровностей и дефектного слоя со значениями радиусов кривизны шлифовальников и детали для каждого перехода. Обрабатываемые поверхности заготовок или блоков, у которых отношение диаметра к радиусу кривизны менее 0,8 шлифуют одним инструментом, используя разные микропорошки. Это объясняется тем, что изменение радиусов шлифовальников невелико и не сказывается при смене переходов.
ЛИТЕРАТУРА
1. Малов А.Н., Законников Обработка деталей оптических приборов. Машиностроение, 2006. - 304 с.
2. Бардин А.Н. Сборник и юстировка оптических приборов. Высшая школа, 2005. - 325с.
3. Кривовяз Л.М., Пуряев Д.Т., Знаменская М.А. Практика оптической измерительной лаборатории. Машиностроение, 2004. - 333 с.