Рис. 1. – Неонові лампи:
а — СН-1; б — МН-3; в — умовне позначення на схемах.
Неонову лампу можна вмикати в коло постійного і змінного струмів, пам'ятаючи при цьому, що опір «запаленої» лампи дуже малий і різке збільшення струму через неї може призвести до утворення дугового розряду і виходу лампи з ладу. Тому послідовно з лампою вмикають опір, що обмежує силу струму.
Характерна властивість неонової лампи, яка широко використовується на практиці, полягає в тому, що в полях високої частоти ці лампи світяться без підмиканя електродів до джерел живлення, оскільки ерс, потрібна для утворення розряду в газі, створюється електромагнітним полем високої частоти. У лампі в цьому випадку утворюється високочастотний розряд. Ця особливість неонових ламп зумовила їх переважне застосування як індикаторів напруги в радіоапаратурі.
Основні технічні дані неонових ламп типів МН3, МН5, МН11 (мініатюрні неонові) відповідно такі: напруга запалювання 65, 150, 85 В; сила робочого струму 1; 0,2; 5А; строк служби 300, 500, 100 год.
Стабілітрон — іонний стабілізатор напруги — застосовують у мережах постійного струму, коли напругу на навантаженні треба підтримувати незмінною.
У стабілітроні всередині скляного балона (рис. 2, а), заповненого інертним газом (неоном, гелієм, аргоном) або парами ртуті, розміщено два циліндричні електроди: зовнішній — катод 3 і внутрішній— анод 1, а в деяких конструкціях ще й запалюючий електрод 2.
Рис. 2. Стабілітрон:
а— будова; б — вольт-амперна характеристика; в — схема вмикання
Запалюючий електрод з'єднаний з катодом і забезпечує зниження напруги запалювання приладу, оскільки відстань між ним і анодом менша, ніж між катодом і анодом.
Вольт-амперна характеристика стабілітрона (рис. 2, б) показує, що, як тільки прилад «запалиться» U=Uз, напруга на електродах зменшиться до робочої Uр, а струм досягне значення /р. Характеристика відображує стабілізуючу дію приладу: зміна струму в діапазоні від Iminдо Imах практично не позначається на напрузі, і його можна вважати постійним. Струм, більший за Ітах, недопустимий, оскільки прилад може перейти в режим дугового розряду, електроди розплавляться і стабілітрон вийде з ладу.
Схему вмикання стабілітрона зображено на рис. 2, в. Принцип стабілізації напруги полягає в тому, що з підвищенням напруги U0 живлення збільшується струм через баластний опір Rбі ділянку тп кола. Здавалося б, мав би збільшитися спад напруги і на резисторі Rб, і наділянні тп. Насправді ж напруга на ділянці тп майже не збільшується, оскільки відповідно до характеристики стабілітрона зміна струму майже не спричинює зміни напруги на його електродах, і через навантаження Rн проходить майже такий самий, як і раніше, струм Ін.
Стабілізатори на стабілітронах прості і досить надійні. Однак у них низький коефіцієнт корисної дії, оскільки при нормальному режимі в колі частина струму проходить через прилад.
Як приклад наведемо технічні дані стабілітронів газорозрядних типів СПП, СГ19С і СГ304С (відповідно): сила струму 5—30, 10—60 і 0,05—1,0 мА, строк служби 1000, 500 і 500 год, напруга горіння 143—155 В, 1,05—1,15 і 28,5-31,5 кВ.
Тиратрон з холодним катодом (рис. 3)—триелектродний іонний прилад тліючого розряду. Всередині балона 4, заповненого інертним газом, закріплено три електроди: катод 1 у формі закритого зверху циліндра; сітка З у вигляді шайби з отвором у центрі і анод 2 — загострений стержень, що проходить крізь отвір у шайбі. Виводами 5 від електродів є тонкі гнучкі провідники.
Рис. 3 – Тиратрон з холодним катодом:
а — будова тиратрона МТХ-90; б — умовне позначення на схемах.
Сітка виконує функції пускового пристрою. На неї подається позитивна напруга (значно менша, ніж на анод), і між нею і катодом встановлюється режим так званого тихого розряду, внаслідок чого поблизу катода утворюється область іонізованого газу. До анода в цей час прикладено високу напругу, проте недостатню для того, щоб тиратрон відкрився, тобто щоб між анодом і катодом утворився тліючий розряд. Тиратрон, як кажуть, перебуває на грані спрацьовування.
Досить тепер подати на сітку запускаючий імпульс, як миттю у просторі між сіткою і катодом утворюється тліючий розряд. Внаслідок додаткової іонізації газу різко збільшується кількість вільних електронів, і, таким чином, створюються умови для утворення тліючого розряду вже на ділянці анод — катод при тій самій анодній напрузі. Тліючий розряд ніби перекидається на анод — тиратрон запалюється. Відразу після цього сітка втрачає свої керівні властивості, оскільки навіть негативна напруга, яку подано на неї, не може заперти тиратрон, тому що негативний заряд сітки буде нейтралізовано позитивними іонами газу, що оточують сітку. Щоб погасити тиратрон, треба зменшити анодну напругу.
Технічні дані тиратронів з холодним катодом марок МТХ-90 (малогабаритний), ТХ-2 і ТХ-5Б відповідно такі: напруга запалювання 150, 350 і 225 В, короткочасний струм анода (не менше) 8,5; 100 і 1,5 мА, довговічність 10000 спрацьовувань 500 і 5000 год.
Контрольні запитання:
1. В чому суть роботи газорозрядних приладів?
2. Які бувають розряди в газах?
3. Які прилади належать до приладів самостійного розряду?
4. Які прилади належать до приладів тліючого розряду?
Інструкційна картка №10 для самостійного опрацювання навчального матеріалу з дисципліни «Основи електроніки та мікропроцесорної техніки»
І. Тема: 2 Електронні прилади
2.4 Електровакуумні та іонні прилади
Мета: Формування потреби безперервного, самостійного поповнення знань; розвиток творчих здібностей та активізації розумової діяльності.
ІІ. Студент повинен знати:
- Призначення та будову іонних приладів з несамостійним розрядом;
- Область застосування приладів.
ІІІ. Студент повинен уміти:
- Застосовувати при побудові схем газорозрядні прилади.
ІV. Дидактичні посібники: Методичні вказівки до опрацювання.
V. Література: [5, с. 35-50].
VІ. Запитання для самостійного опрацювання:
1. Іонні прилади з несамостійним розрядом – газотрони, тиратрони дугового розряду.
VІІ. Методичні вказівки до опрацювання: Теоретична частина.
VІІІ. Контрольні питання для перевірки якості засвоєння знань:
1. Що таке газотрон?
2. Призначення та будова газотрону?
3. Будова та призначення іскрового розрядника?
ІХ. Підсумки опрацювання:
Підготував викладач: Бондаренко І.В.
Теоретична частина: Електровакуумні та іонні прилади
План:
1. Іонні прилади з несамостійним розрядом – газотрони, тиратрони дугового розряду.
Література
1. Іонні прилади з несамостійним розрядом – газотрони, тиратрони дугового розряду
Газотрон (рис. 4, а) — це найпростіший прилад дугового розряду. Всередині колби газотрона, заповненої інертним газом (аргоном, гелієм, ксеноном) або парами ртуті, розміщено два електроди — катод і анод. Конструкція приладу така, що дає можливість при порівняно невеликих анодних напругах утворювати режим дугового розряду, минаючи фазу тліючого розряду.
Вольт-амперна характеристика газотрона (рис. 4, б) показує, що при анодних напругах, які не перевищують напруги запалювання, через газотрон проходить незначний струм, зумовлений термоелектронною емісією катода (ділянка до А). Коли Ua=U3, відбувається інтенсивна іонізація газу й утворюється дуговий розряд. Напруга на аноді дещо зменшується (ділянка АВ) і далі майже не залежить від струму, що проходить через нього (ділянка ВС). Цей режим і є робочим режимом газотрона.
Рис. 4. Газотрон:
а — будова; б — вольт-амперна характеристика; в — умовне позначення на схемах.
Збільшення струму понад iАдоп відповідає точці С на характеристиці, не допускається, оскільки газотрон може вийти з ладу. Основна властивість газотрона — одностороння провідність. Коли до його анода прикладено негативну напругу (відносно катода), то дуговий розряд припиниться. Проте слід зазначити, що через газотрон все-таки піде (хоча й незначний) струм зворотного напрямку, зумовлений наявністю невеликої кількості електронів і іонів на ділянці анод — катод. Цю напругу називають зворотною. Таким чином, газотрону властива одностороння провідність, тобто в одному напрямку він пропускає струм набагато краще, ніж у другому. Разом з тим, коли негативна напруга на аноді перевищить певну величину, то в газотроні утворюється тліючий розряд від анода до катода, який може перейти в дуговий розряд.
Зворотна напруга Uзвзначно більша за напругу запалювання U3тому властивість односторонньої провідності дає можливість використати газотрон у пристроях перетворення змінного струму на постійний — у випрямлячах.
Газотрони порівняно з вакуумними випрямними приладами (кенотронами) мають набагато менший внутрішній опір і при тих самих розмірах пропускають більші струми при порівняно низьких (10—20 В) спадах напруги на ділянці анод — катод. Газотрони мають суттєвий недолік — зворотний струм проходить навіть у випадках невеликих зворотних напруг.
Умовне позначення газотрона подано на рис. 4, в.
Технічні дані газорозрядних газотронів марок ГП-0,3/8, ГП-1/22 і ГП-6/15 відповідно такі: допустима зворотна напруга 8, 22 і 15 кВ, робочий струм 0,3, 1,0 і 6,0 А, строк служби 500, 300 і 500 год.
Іскровий розрядник— найпоширеніший представник іонних приладів, в яких використовується іскровий розряд. У скляному балоні 2 іскрового розрядника (рис. 5) розміщено два електроди 1, з'єднані з вивідними контактами 3. Балон заповнено інертним газом (звичайно це криптон), але на відміну від приладів тліючого або дугового розрядів тиск газу тут вищий. Такі розрядники призначені для захисту ліній зв'язку, антенних пристроїв, схем і приладів від грозових розрядів та інших видів короткочасних перенапружень.