Таким образом, приближенно можно принять, что реальные сообщения имеют конечную длительность Tи одновременно их спектры ограничены по частоте величиной Fm. При этом бесконечный ряд Котельникова (13) преобразуется в конечный с числом ненулевых отсчетов n, примерно равным отношению длительности сообщения к интервалу дискретности:
(14)Основные формулы теоремы отсчетов для сигналов, отличных от нуля на конечном интервале tÎ (0, T), принимают вид:
(15) (16) (17)Наконец, когда сигнал {X(t), tÎ(0, T) } задан конечным числом отсчетов X(0), X(Dt),. ., x(kDt), в формулах (15) - (17) в отличие от соответствующих точных формул следовало бы писать знак приближенного равенства (@). Однако обычно этого не делают.
Еще одним приближением, которое не может быть выполнено в действительности, является предположение об "идеальности" амплитудно-частотной характеристики восстанавливающего фильтра H(f). Дело в том, что фильтр с идеально прямоугольной АЧХ имеет ИПХ бесконечной длительности и не может быть реализован на практике. Фильтры же с конечной ИПХ имеют теоретически бесконечную полосу. Нетрудно показать, что влияние конечной длительности ИПХ восстанавливающего фильтра на сигнал Х*(t) имеет тот же характер, что и ограниченность интервала наблюдения функции Х(t).
Следовательно, для фильтра НЧ с заданной АЧХ всегда можно выбрать шаг дискретизацииDt таким, чтобы энергия ЭD, просачивающаяся через "хвосты" его амплитудно-частотной характеристики (на частотах f >1/2Dt), была пренебрежимо мала по сравнению с энергией всего сигнала Эx. В связи с этим на практике шаг дискретизации реальных сообщений Х(t) делают несколько меньшим, а частоту дискретизации, соответственно, – несколько большей (по крайней мере, на 30 - 50%), нежели предписывает теорема Котельникова.
Все большую часть передаваемых с использованием РТС ПИ сообщений, особенно в последнее время, составляют сигналы, являющиеся функциями не только времени - λ(t) (речь, музыка и т.п.), но и ряда других переменных, например, λ(x,y), λ(x,y,t) (статические и динамические изображения, карты физических полей и т.п.). В связи с этим естественным является вопрос: можно ли так, как это делается для временных сигналов (или других функций одной переменной), производить дискретизацию многомерных сигналов (функций нескольких переменных) ?
Ответ на этот вопрос дает теорема дискретизации для двумерных (или в общем случае - для многомерных) сигналов, которая утверждает: функция двух переменных λ(x,y), двумерное преобразование Фурье которой
(18)равно нулю при fx ≥ fxmax и fy ≥ fymax, однозначно определяется своими значениями в равноотстоящих точках плоскости переменных x и y, если интервал дискретизации удовлетворяет условию Δx ≤ 1/2fxmax, Δy ≤ 1/2fy. Процедура дискретизации двумерной функции иллюстрируется примером, приведенным на рис.2 - 4.
Рис. 2.
Рис. 3.
Рис. 4.
Доказательство двумерной теоремы дискретизации основано, так же как и для одномерного случая, на однозначном соответствии между сигналами и их спектрами: одинаковым изображениям (двумерным функциям) соответствуют одинаковые спектры, и наоборот, если спектры двух функций одинаковы, то и сами эти функции равны друг другу.
Преобразование Фурье (спектр) дискретизованной двумерной функции FF{λ(iDx,jDy) } получается периодическим продолжением спектра исходной непрерывной функции λ (x,y) в точки частотной плоскости (kDfx,lDfy) (рис.5), где fxи fy - так называемые "пространственные частоты", являющиеся аналогами обычной "временной" частоты и отражающие скорость изменения двумерной функции λ (x,y) по соответствующим координатам (крупные фрагменты изображения - низкие частоты, мелкие детали - высокие частоты).
Аналитически это можно записать следующим образом:
(18)Из рис.1.8. видно, что если соблюдается условие неперекрываемости периодических продолжений спектра FF{λ(iDx,jDy) }, а это справедливо при Δx ≤ 1/2fxmax, Δy ≤ 1/2fymax, то с помощью идеального двумерного ФНЧ с частотной характеристикой вида
(19)из спектра дискретизованной функции FF{λ(iDx,jDy) } можно абсолютно точно выделить спектр исходной непрерывной функции FF{λ(x,y) } и, следовательно, восстановить саму функцию.
Таким образом, видно, что не существует принципиальных отличий в дискретизации между одномерными и двумерными (многомерными) функциями. Результатом дискретизации в обоих случаях является совокупность отсчетов функции, различия могут быть лишь в величине шага дискретизации, числе отсчетов и порядке их следования.
1. Лидовский В.И. Теория информации. - М., "Высшая школа", 2002г. – 120с.
2. Метрология и радиоизмерения в телекоммуникационных системах. Учебник для ВУЗов. / В.И. Нефедов, В.И. Халкин, Е.В. Федоров и др. – М.: Высшая школа, 2001 г. – 383с.
3. Цапенко М.П. Измерительные информационные системы. - . – М.: Энергоатом издат, 2005. - 440с.
4. Зюко А.Г., Кловский Д.Д., Назаров М.В., Финк Л.М. Теория передачи сигналов. М: Радио и связь, 2001 г. –368 с.
5. Б. Скляр. Цифровая связь. Теоретические основы и практическое применение. Изд.2-е, испр.: Пер. с англ. – М.: Издательский дом "Вильямс", 2003 г. – 1104 с.