Смекни!
smekni.com

Динамический синтез систем автоматического управления (стр. 5 из 9)

Составим таблицу, изменяя w от 0 до ∞:

Таблица 1.3

W,
P(w) Q(w)
0 -10,604 -∞
852,2 0 5,806*10-3
274,2 -0,094 0
0 0

–– годограф скорректированной системы

- - годограф системы с пропорциональным регулятором

Рисунок 1.16 – Годограф Найквиста

Характеристическое уравнение имеет вид:

Все корни характеристического уравнения, кроме одного нулевого, левые, следовательно, разомкнутая система на границе устойчивости. Для устойчивости замкнутой системы необходимо и достаточно, чтобы годограф Найквиста, дополненный на участке разрыва дугой бесконечно большого радиуса, не охватывал особу точку (-1; j0). Данное условие выполняется, значит, замкнутая система устойчива.

Построим годограф Михайлова для системы.

Передаточная функция замкнутой системы:

(1.13)

Функция Михайлова имеет вид:

(1.14)

Выполним замену S на jw и выделим вещественную и мнимую части соответственно.

.

;

Найдем значения X(w) и Y(w), изменяя при этом w от 0 до ∞:

Таблица 1.4

w,
X(w) Y(w)
0 85.227 0
26.125 0 114.613
79.717 -648.966 0
275.355 0 -13120
816.259 6.473*106 0

–– скорректированной системы

- - системы с пропорциональным регулятором

Рисунок 1.17 годограф Михайлова для замкнутой системы


Годограф Михайлова начинается на вещественной положительной оси и при изменении частоты w от 0 до +

последовательно проходит 5 квадрантов против часовой стрелки, нигде не обращаясь в ноль. Это свидетельствует об устойчивости замкнутой системы.

1.4.2 АЧХ “вход- выход системы”, “вход- выход ДОС”, “вход- выход УМ”

Рассчитаем и построим для замкнутой системы АЧХ “вход- выход системы”. Для этого воспользуемся передаточной функцией замкнутой системы (1.13). Заменим sнаjw и преобразуем данное выражение:

Выделим вещественную и мнимую части соответственно:

Находим

(1.15)

График АЧХ “вход- выход системы” представлен ниже.

Рассчитаем и построим АЧХ “вход- выход ДОС”. Запишем передаточную функцию замкнутой системы по выходу ДОС, которая имеет вид:

Преобразуем данное выражение:

Вещественная и мнимая части соответственно:

(1.16)

Получим модуль передаточной функции замкнутой системы по выходу ДОС:

(1.17)


––– АЧХ «вход- выход ДОС»,

- - - АЧХ «вход- выход системы».

Рисунок 1.18 АЧХ

Рассчитаем и построим АЧХ “вход- выход УМ ”. Передаточная функция замкнутой системы по выходу УМ имеет вид:

(1.18)

Вещественная и мнимая части соответственно:

Модуль передаточной функции замкнутой системы по выходу УМ:

Рисунок 1.19 АЧХ вход-выход УМ

1.4.3 Частота среза разомкнутой системы, запасы устойчивости, критический коэффициент усиления, показатель колебательности

Частота среза и запасы устойчивости разомкнутой системы определяются по ЛАЧХ и ЛФЧХ. Определим их из рисунка 1.15

ЛАЧХ пересекает ось в точке lg(w)=1.614 дек. Тогда wср=41.072 с-1

ЛФЧХ пересекает уровень -180° при lg(w)=2.438 дек. Тогда wкр=274.35 с-1

Запас устойчивости по амплитуде найдем по годографу Найквиста:

Где hзап- расстояние до точки пересечения годографа Найквиста с действительной осью. (рис. 1.16)

дБ

Запас устойчивости по фазе определим по рисунку 1.15:

φзап=φ(wcp)+1800

φзап=54,7330


Критический коэффициент найдем с использованием критерия Гурвица:

Характеристическое уравнение замкнутой системы имеет вид:

(3.1)

Тогда оставим переменным параметр: K.

Получим следующие коэффициенты:

Для нахождения системы на границе устойчивости должны выполняться следующие условия:

1)одинаковость знака всех коэффициентов

2)для системы 5 порядка определитель D4=0

Решая уравнение в пакете MathCad получим следующие результаты:

Показатель колебательности определим по формуле:

,

и N(0) находим по АЧХ замкнутой системы по выходу ДОС

N(0)=1

Nmax=1.239,


Следовательно

.

Сравним результаты с результатами, полученными в пункте 1.2.3

Таблица 1.5 – Сравнительная характеристика полученных результатов

Lзап, дБ
, o
Ккр М
tp, с
С регулятором 0,409 0,75 93,3 75,214 95 22,72
С коррекцией 10,6 54,733 431 1.239 18,8 0,147

1.4.4 Оценки прямых показателей качества

Оценим σ и tp по вещественной частотной характеристике системы.