Смекни!
smekni.com

Динамический синтез систем автоматического управления (стр. 4 из 9)

Таким образом, мы сдвигаем первую частоту сопряжения и совмещаем ее с частотой wа. Отсюда находим первую постоянную времени желаемой ЛАХ

с

Для того, чтобы реальная ЛАХ не заходила в запретную область при w=wk, приподнимаем ЛАХ на 3 дБ.

Построение среднечастотного участка.

Среднечастотный участок определяет устойчивость, запасы устойчивости и качество переходного процесса. Данный участок характеризуется двумя параметрами: частотой среза

и наклоном асимптоты. Чем больше частота среза, тем выше быстродействие системы, тем меньше время регулирования tp. Наиболее целесообразно брать наклон асимптоты –20 дБ/дек, так как чем больше наклон асимптоты, тем сложнее обеспечить хорошие динамические свойства системы.

Т.к. заданы прямые показатели качества, то воспользуемся методом Солодовникова В.В. Для нахождения

используем готовые номограммы.

;

Выбираем частоту среза

Чем больше wc, тем более быстродействующая будет система; чем меньше wc, тем проще корректирующее устройство.

Выбираем wc=0.9wп=

На оси logwотмечаем точку, соответствующую частоте среза wc,и через нее проводим прямую с наклоном -20дБ/дек. Эта прямая будет среднечастотной асимптотой желаемой ЛАХ.

Избыток фаз определяем в соответствии с заданным перерегулированием. Значение L1 находим из номограммы, для

; L1=25дБ.

Среднечастотный участок проводим вправо до достижения L1=-25дБ. Это значение достигается при logw3>logwc дек. Поэтому совмещаем частоту w3 с частотой wс, для упрощения корректирующего устройства. Избыток фаз незначительно уменьшится, но это незначительно повлияет на перерегулирование системы.

Левая граница определяется сопряжением среднечастотного и низкочастотного участков. Из Рисунка видно, что сопряжение участков происходит при logw2=1,42 дек. Следовательно, частота сопряжения w2= 26,303с-1.

Высокочастотные асимптоты желаемой ЛАЧХ выполняем параллельными высокочастотным асимптотам ЛАЧХ исходной системы. То есть, на частоте wс наклон становится -80дБ/дек.

Желаемая ЛАХ представлена на миллиметровке.

Корректирующие звенья могут вводиться в систему различными способами: а) последовательно; б) параллельно; в) в виде местной обратной связи.

В данной работе КУ включается последовательно, т. к. в маломощных системах нецелесообразно применение корректирующих устройств, сложность моделей которых соизмерима со сложностью моделей всей системы. Простота - достоинство ПКУ. Но есть и недостаток – эффект коррекции уменьшается с течением времени эксплуатации системы, что связано с изменением элементов параметров системы из-за процессов старения и износа. Поэтому при использовании ПКУ предъявляются жесткие требования к стабильности параметров элементов системы.

Определим передаточную функцию корректирующего устройства последовательного типа по формуле:

Получим ПФ корректирующего устройства и определим параметры:


где

,

где

Структурная схема скорректированной системы примет вид


_
Yдос(S)

Рисунок 1.13 – Структурная схема скорректированной системы

ЛАХ корректирующего устройства получается при вычитании исходной ЛАХ из желаемой (рисунок на миллиметровке).

Проверим, соответствует ли система с корректирующим устройством требованиям ТЗ.

Определим ошибку системы.

Относительную динамическую ошибку системы определим как в п. 1.1 по формуле:


Передаточная функция разомкнутой системы:

(1.10)

Частотная передаточная функция разомкнутой системы:

Тогда, модуль частотной передаточной функции:

Подставляя значение ωkвформулу для

, находим

Относительная динамическая ошибка системы 1,6%, следовательно, скорректированная система удовлетворяет требованиям ТЗ.

Рассмотрим, удовлетворяет ли исходная система требованию по качеству переходного процесса: время регулирования tp- не более 0.25 с, перерегулирование

- не более 20%.

Для проверки величин

и tpпостроим график переходной характеристики исходной системы по выходу ДОС:

,

где

– передаточная функция замкнутой системы по выходу ДОС.

Рисунок 1.14 – График переходной характеристики

,

где hmax=1,188 - максимальное значение регулируемой величины;

=1- установившееся значение регулируемой величины в результате завершения переходного процесса.

Перерегулирование скорректированной системы удовлетворяет ТЗ.

Определим время переходного процесса tp:

построив “коридор” с величину

, из Рисунка 1.14 определяем, что tp=0.147 с.

Временя регулированияtp удовлетворяет требованию ТЗ.

1.4 Анализ скорректированной системы в частотной области

1.4.1 Рассчитаем и построим ЛАЧХ и ЛФЧХ скорректированной разомкнутой системы

Используем передаточную функцию разомкнутой системы (1.10)

Для получения частотной передаточной функции заменим S на jw и преобразуем

Вещественная и мнимая части соответственно:

(1.11)
; (1.12)

Тогда

.

ЛАЧХ и ЛФЧХ разомкнутой системы представлены ниже.

ЛАЧХ скорректированной системы сместилась вправо, следовательно, необходимые требования по точности выполняются, запасы устойчивости увеличились по сравнению с системой с пропорциональным регулятором.


–– ЛАЧХ и ЛФЧХ скорректированной системы

- - ЛАЧХ и ЛФЧХ системы с пропорциональным регулятором

Рисунок 1.15 ЛАЧХ и ЛФЧХ систем

Построим график АФЧХ по имеющимся формулам (1.11) и (1.12) и сравним его с графиком системы с пропорциональным регулятором. Он представляет собой годограф Найквиста, поэтому сделаем ниже дополнительно выводы об устойчивости системы.