Смекни!
smekni.com

Дескрипторы систем АПЧ. Особенности построения и работы систем АПЧ импульсных приемников. (стр. 1 из 2)

БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИНФОРМАТИКИ И РАДИОЭЛЕКТРОНИКИ

кафедра ЭТТ

РЕФЕРАТ на тему:

«Дескрипторысистем АПЧ. Особенности построения и работы систем АПЧ импульсных приемников. ФАПЧ»

МИНСК, 2008

Дискриминаторы.

Дискриминатор или частотный детектор в цепи АПЧ предназна­чен для преобразования уходов промежуточной частоты от номинала в управ­ляющее напряжение, полярность которого зависит от знака расстройки. Дискриминаторы характеризуются полосой пропускания и крутизной характеристики Sд. Необходимая полоса пропускания зависит от максимальных уходов проме­жуточной частоты, т. е. от степени нестабильности гетеродина.

Независимо от типа дискриминатора существуют некоторые общие требования, предъявляемые к нему. Крутизну характеристики дискриминатора во всех случаях выгодно иметь, возможно, большей. Для этой цели, в частности, необходимо, чтобы детекторы дискриминатора работали в режиме линейного детектирования, когда их коэффициент передачи может быть достаточно большим (0,5—0,8). Для обеспечения линейного режима детектирования следует иметь амплитуды напряжения, подаваемые на дискриминатор вблизи частоты его настройки fo не менее десятых долей вольта. Последнее обстоятельство позволяет решить вопрос о необходимости УАПЧ и найти минимальную величину усиления. Важнейшим требованием для любого дискриминатора является стабильность его переходной частоты fo при колебаниях температуры и воздействии других внешних дестабилизирующих факторов. Уход частоты fо по любым причинам будет создавать дополнительную ошибку и работе системы АПЧ

Рассмотрим основные схемы дискриминаторов.

Одном из возможных явля­ется схема дискриминатора ил расстроенных контурах, которая может быть вы­полнена в нескольких вариантах: с последовательными контурами параллель­ными контурами при различных видах связи контуров с выходным каскадом УПЧ. На рис. 1 приведена структурная схема дискриминатора на расстроенных параллельных контурах. Два контура настроены на частоты f1 и f2. Раз­ность этих частот определяет полосу пропускания дискриминатора. Напряжение, снимаемое с каждого из контуров, детектируется амплитудными детекторами Д1 и Д2. На нагрузке выпрямленное напряжение этих детекторов вычитается. На некоторой частоте (f0) эта разность равна нулю. При расстройке частоты, поступающей на дискриминатор, полярность выходного напряжения определяется знаком этой расстройки.

На рис. 2. показана схема дискриминатора на расстроенных контурах. Контуры L1C1 и L2C2симметрично расстроены относительно переходной частоты f0. Выходной контур смесителя или УАПЧ LоC0настроен на переходную частоту.

Возможен также вариант схемы последовательного вида (рис. 3). На пере­ходной частоте fо напряжении, вырабатываемые детекторами Д1 и Д2, равны, поскольку они имеют противоположную полярность, их разность uр равна нулю.

При расстройке частоты относительно f0 полярность ирбудет определяться знаком этой расстройки.

Для расчета частотной характеристики дискриминаторов на расстроенных контурах воспользуемся уравнениями кривых резонанса контуров, настроенных на частоты f1 и f2(рис. 4):

Рис. 1.Структурная схема дискриминатора на расстроенных контурах


Рис. 2. Схема дискриминатора на расстроенных контурах параллельного типа

Рис. 3. Схема дискриминатора последовательного типа на расстроенных контурах

Рис. 4. Кривые настройки контуров дискриминатора

(1)

(2)

где Q1 и Q2— добротности контуров, причем часто Q1 = Q2=Q.

Чтобы контур, предшествующий дискриминатору, не сужал его полосы про­пускания, добротность этого контура берется в несколько раз меньше доброт­ности контуров дискриминатора. При этом условии частотная характеристикадискриминатора на расстроенных контурах определяется соотношением

Кд=Ад[

-
] (3)

где Ад — коэффициент пропорциональности, зависящий от режима работы детекторов дискриминатора и схемы суммирования выходного напряжения. При достаточно больших амплитудах сигналов, поступающих на детекторы, для дискриминатора (см. рис.4. Ад — 0,3 ... 0,4.

Воспользовавшись формулой (3), найдем переходную частоту, накоторой Кд = 0. Для этого необходимо иметь

откуда

f=

В то же время

f2-f1=Δfд, (4)

где fд — полоса частот между максимумами дискриминаторной характеристики, которая при расчете обычно задается.

Решив совместно (2) и (4), находим частоты настроек контуров дискри- минатора:

Ориентировочное значение добротности контуров можно найти из выражения
Q~ (1...2) =f0/fд. (5)

От ряда недостатков свободна схема, приведенная на рис. 65, в кото­рой частотные характеристики дискриминатора и УПЧ формируются многокон­турными избирательными системами / и II, каждая из которых может содер­жать два и более резонансных контуров. В цепи УПЧ напряжения с выхода / и II складываются и формируют полосу пропускания УПЧ; в цепи АПЧ эти напряжения после детектирования вычитаются и формируют характеристику дискриминатора.

Возможный вариант схемы АПЧ, соответствующий структурной схеме рис. 5.

Рис. 5. Структурная схема АПЧ с совмещенной многоконтурной избирательной системой


Рис.6. Структурная схема радиолокационной станции СВЧ диапазона

Особенности построения и работы систем АПЧ импульсных приемников

Автоподстройка частоты импульсных приемников издавна при­менялась в радиолокационных системах, работающих в диапазоне СВЧ на частотах 3000 МГц и выше (λ= 10 см). Цепи АПЧ таких приемников имеют свои особенности, которые рассмотрены ниже.

Структурная схема одной из первых радиолокационных систем сантиметрового диапазона при­ведена на рис. 6. В передатчике для генерации СВЧ колебаний используется магнетрон М, управляемый импульсами постоянного тока нужной длительности (единицы микросекунд и меньше). Гетеродином приемника служит клистрон К (в современных системах чаще применяются полупроводниковые генераторы), частота колебаний которого зависит от отрицательного напряжения, поданного на его отражатель. Поэтому устройство не нуждается в отдельном устройстве управления частотой. АПЧ может осуществляться путем воздействия на отра­жатель клистрона усиленного напряжения. Управление частотой должно осу­ществляться так, чтобы разность частот, генерируемых магнетроном передатчи­ка и клистроном, оставалась постоянной и равной средней частоте настройки УПЧ приемника.

Фазовая автоподстройка частоты (ФАПЧ).

Все рассмотренные выше системы АПЧ основаны на выделении сигнала ошибки, равного разности частот подстраиваемого гетеродина и неко­торого эталона, которым является переходная частота дискриминатора. Этой разности пропорциональны сигнал ошибки, и регулирующее напряжение ир, ко­торое так воздействует на элементы приемника, что результирующая ошибка уменьшается. Но это не единственно возможный принцип стабилизации часто­ты гетеродина. Существует также широкий класс си­стем фазовой автоподстройки частоты, которые в ряде случаев 'более эффективны, а иногда и служат единственно возможными способами автоподстройки частоты различных генераторов и гетеродинов прием­ников в частности. Однако системы ФАПЧ намного сложнее и дороже рассмотренных схем частотной автоподстройки. Поэтому они не применяются в мас­совых радиовещательных приемниках, а использу­ются исключительно в специальной радиоприемной и другой профессиональной аппаратуре.

На рис. 7 приведена схема одного из вариантов ФАПЧ вместо частотного детектора (дискриминатора) в цепь входит фазовый детектор. В цепь входит высокостабильный опорный генератор, под фазу ко­торого подстраивается фаза управляемого генерато­ра (гетеродина).

Задача фазового детектора состоит в получении постоянного выпрямлен­ного напряжения, зависящего от фазового сдвига угла детектируемого сигнала

относительно напряжения опорного генератора. Эту цель можно достигнуть, если подавать на фазовый детектор сигнал и0с фазой φ и напряжение от опор­ного генератора Uг, фаза которого считается нулевой (рис. 8). При отклонении фазы детектируемого сигнала на выходе фазового детектора получается напря­жение, пропорциональное фазовому сдвигу, а полярность его соответствует зна­ку изменения фазы.

В фазовых детекторах как и в других видах детекторов, используются не­линейные элементы — диоды. Для реализации процесса фазового детектирова­ния необходимо осуществить перемножение двух сигналов. Это можно полу­чить, если нелинейный элемент описывается уравнением, содержащим слагаемое, пропорциональное квадрату воздействующего напряжения: