Смекни!
smekni.com

Дескрипторы систем АПЧ. Особенности построения и работы систем АПЧ импульсных приемников. (стр. 2 из 2)

i= аи + bиг+ ...,

где и — суммарное напряжение, равное

и = исcosi (ωct +φ) +Uгcosωnt.

На практике это условие всегда выполняется.

От второго члена выражения получается составляющая тока bUcUгcosφ, зависящая от сдвига фаз детектируемых колебаний. Зависимость этой составляющей тока от амплитуд детектируемых колебаний нежелательна. Для устранения этого эффекта используют амплитудные ограничители от фа­зового детектора. Одна из возможных схем фазового детектора приведена на рис. 9. Один из двух сигналов, в данном случае ис, поступает на диоды в противофазе, вто­рой иг— в фазе. Полученное на выходе фазового детектора напряжение используется в качестве регулирующего для цепи ФАПЧ. Управляющее напряжение с выхода фазового детектора подается на элемент, подстраивающий фазу гетеродина. B качестве таких устройств, как и в системах частотной АПЧ, используются управляемые реактивности, например варакторы.

Рис. 7. Структурная схема ФАПЧ: 1-эталонный генератор; 2-фазовый детектор 3-подстраиваемый генератор; 4-управляющий элемент

Рис.8. К пояснению работы фазового детектора

Рис. 9. Схема фазового детектора

Разновидности систем АПЧ.

При проектировании супергетеродинных радиоприемных уст­ройств различного назначения предусматривают ручные и автома­тические регулировки частот гетеродинов. Указанные регулировки необходимы для обеспечения настройки приемника на частоты раз­ных источников сигналов и подстройки его, чтобы создать наилуч­шие условия приема сигналов при всех возможных изменениях как частот сигналов, так и частот настроек приемника. Изменения частот могут быть вызваны колебаниями температуры, влажности и давления окружающей среды, изменениями условий распростра­нения радиоволн, напряжений источников питания, эффектом Доплера и рядом других факторов. Несущая частота сигнала может также изменяться в соответствии с заданной программой (напри­мер, при быстрой перестройке от импульса к импульсу частоты пе­редатчика импульсной РЛС). Если в приемном устройстве не при­менять регулировок частот, то необходимо расширять его полосу пропускания так, чтобы принимаемые сигналы не выходили из по­лосы приема при всех условиях эксплуатации. Это приво­дит к ухудшению чувствительности и избирательности приемника.

Ручные регулировки частоты (РРЧ) сравнительно просты, и их часто применяют в радиоприемных устройствах. Однако, так как изменения частот нерегулярны, то наибольшую эффективность приема можно обеспечить, применяя автоматическую подстройку ча­стоты (АПЧ)гетеродина.

По характеру изменения частоты подстраиваемого гетеродина системы АПЧ делятся на две группы:

1. Системы АПЧ, стабилизирующие частоту гетеродина. В этом случае АПЧ осуществляет подстройку частоты гетеродина (Г) под эталонную частоту (рис. 10).

Рис. 10. Структурная схема системы АПЧ, стабилизирующей частоту гетеродина.

В качестве источника колебаний эталонной частоты могут использоваться высокочастот­ные контуры, которые опреде­ляют стабилизируемую частоту. Измерительный элемент (ИЭ) при этом представляет собой частотный детектор (ЧД), настроенный на эталонную частоту. Эталоном могут также быть колебания генератора эталонной частоты (ГЭЧ). Колебания гете­родина и эталонного генератора сравниваются в ИЭ, в качестве которого может использоваться фазовый детектор (ФД). Напряже­ние, пропорциональное отклонению частоты гетеродина от эталонной, используется в качестве сигнала ошибки в цепи управления гетеродина, состоящей из фильтра нижних частот (ФНЧ), усили­теля постоянного тока (УПТ) и регулятора частоты (РЧ).

Рис. 11. Структурная схема системы АПЧ, Рис.12. Схема АПЧ с

стабилизирующей промежуточную частоту поисковым устройством

2. Системы АПЧ, стабилизирующие промежуточную частоту сигнал fп, т. е. разность (или сумму) частот сигнала (передатчика) fс и гетеродина fг. которые могут независимо меняться под дейст­вием различных причин (рис. 11). В таких системах АПЧ, в от­личие от систем первой группы, содержится еще смеситель (С) и усилитель промежуточной частоты (УПЧ). Как и в системах пер­вой группы, промежуточная частота здесь сравнивается с эталонной, в качестве которой можно использовать частоту настройки ЧД или частоту ГЭЧ.

Часто в системах АПЧ используют поисковое устройство (ПУ), управляющее частотой гетеродина по определенной программе (рис. 12). После того как частота гетеродина достигает значения, обеспечивающего попадание сигнала в полосу приема, в устрой­стве захвата (УЗ) вырабатываются сигналы «захвата» и перестройка частоты гетеродина прекращается. В качестве ИЭ в этом случае можно использовать резонансный контур, настроенный на стабили­зируемую частоту гетеродина (для первой группы систем АПЧ) или на промежуточную частоту (для второй группы систем АПЧ). В некоторых системах АПЧ одни и те же каскады (чаще всего это выходные) могут сначала работать в режиме «поиска», а затем при «захвате» переходить в режим слежения за частотой сигнала. Известны системы АПЧ, которые используются как измерители ча­стоты сигнала.

По виду схем различают: электронные системы АПЧ, в которых используют только электронные элементы для усиления и преобра­зования сигналов, а также для регулировки частоты, и электро­механические системы АПЧ, в которых наряду с электронными элементами содержатся механические регуляторы частоты.

Электронные системы АПЧ обладают большим быстродействием, чем электромеханические, а электромеханические системы АПЧ позволяют обеспечить больший диапазон подстройки частоты. Часто используют комбинированные системы, в которых применены и электромеханические и электронные АПЧ. При этом обеспечивает­ся сравнительно большой диапазон подстройки частоты и достаточ­ное быстродействие.

По характеру сигнала различают: непрерывные, импульсные и дискретные системы АПЧ. В дискретных системах АПЧ регули­рующее напряжение формируется из импульсов одного такта работы приемника, а используется в следующем такте .

По типу измерительного элемента системы АПЧ делятся на частотные (АПЧ) и фазовые (ФАПЧ). В частотных системах АПЧ в качестве измерительного элемента используются частотные де­текторы, а в ФАПЧ — фазовые детекторы.

По быстродействию системы АПЧ делятся на быстрые (БАПЧ) и медленные инерционные. В медленных системах АПЧ время установления переходного процесса во много раз больше времени установления переходного процесса в приемном Канале, опреде­ляемого полосой пропускания канала (для импульсных приемных устройств — несколько периодов повторения импульсов). В БАПЧ время установления переходного процесса меньше длительности импульсных сигналов.

По характеру зависимости ошибки от величины внешнего воз­действия системы АПЧ делятся на статические и астатические. Ста­тическими называются такие АПЧ, в которых при постоянном внеш­нем воздействии имеется постоянная установившаяся ошибка, зависящая от величины воздействия. Астатическими называются такие системы, в которых при любом постоянном внешнем воздей­ствии установившаяся ошибка равна нулю. Система является аста­тической, если в ее составе имеются интегрирующие элементы. Примером астатической системы АПЧ является ФАПЧ.

Основными узлами АПЧ являются гетеродин, регулятор часто­ ты гетеродина, частотный или фазовый детектор и фильтр низких частот. Кроме того, в систему АПЧ могут входить смеситель, пре­образователь напряжения, усилители и эталоны частоты (источники эталонных колебаний).


ЛИТЕРАТУРА

1. Охрименко А.Е. Основы извлечения, обработки и передачи информации. (В 6 частях). Минск, БГУИР, 2004.

2. Девятков Н.Д., Голант М.Б., Реброва Т.Б.. Радиоэлектроника и медицина. –Мн. – Радиоэлектроника, 2002.

3. Медицинская техника, М., Медицина 1996-2000 г.

4. Сиверс А.П. Проектирование радиоприемных устройств, М., Радио и связь, 2006.

5. Чердынцев В.В. Радиотехнические системы. – Мн.: Высшая школа, 2002.

6. Радиотехника и электроника. Межведоств. темат. научн. сборник. Вып. 22, Минск, БГУИР, 2004.