2.2 Безкорпусна герметизація
Здійснюється спеціальними вологозахисними лаками і еластичними компаундами методами лиття під тиском або заповненням у вакуумі і застосовується лише для захисту напівпровідникових мікросхем при незначній зміні зовнішніх впливів [3].
Використання безкорпусних ВІС в мікроелектронній апаратурі дозволяє забезпечити значне зменшення її малогабаритних характеристик, зниження значень перехідних опорів, паразитних індуктивностей і ємностей, збільшення надійності. Безкорпусні ВІС наділені універсальністю використання при пониженій матеріалоємності.
Безкорпусні ВІС виготовляють з гнучкими дротяними виводами, на поліамідному носії з об’ємними виводами. На комутаційній платі ВІС на поліамідному носії займають площу, в 4-10 і більше разів меншу в порівнянні з мікросхемами в корпусах. Для монтажу на плату виводи ВІС в цьому випадку мають вид квадратних контактних площадок, розміщених в периферійних областях кристалу.
Використання безкорпусних ВІС на поліамідних носіях дозволяє підвищити надійність мікроелектронної апаратури за рахунок: зменшення кількості зварних і паяних з’єднань в розрахунку на одну контактну площадку ВІС (для корпусних – три-чотири з'єднання, для безкорпусних – два-три), покращення умов відводу теплоти при установці кристалу безпосередньо на тепловідвідний п’єдестал, зниження механічних напруг в кристалі ВІС і невеликої маси.
Безкорпусні ВІС з об’ємними виводами являють собою кристали ВІС, на контактних площадках яких утворені шарикові (або стовпчикові) виводи. Об’ємні виводи виготовляють із золота, залуженої або позолоченої міді і сплаву олово-срібло. Такі ВІС займають на комутаційній платі площу в 16-40 разів меншу, ніж корпусні ВІС, і в 4-10 разів меншу, ніж безкорпусні ВІС на поліамідному носії. Опір їх виводів в 20-100 разів, паразитна ємність в 60-200 разів і міжвивідна ємність в 9-50 разів нижча, ніж у корпусних ВІС.
Об’ємні виводи на контактних площадках кристалу ВІС можуть бути сформовані двома різними способами. В першому способі, який називають «мокрим», використовують процеси вакуумного осадження бар’єрного шару (хром-нікель, хром-мідь, ванадій-мідь), на якому гальванічно вирощують пропійні шарики. Бар’єрний шар створюють з металів, які мають хорошу адгезію до алюмінію кристалу ВІС і не утворюють з ним випрямляючих контактів, тобто таких, що не впливають на електричні параметри ВІС. До недоліків «мокрого» способу відносять важкість нанесення однорідного покриття необхідної товщини, важкість контролю за складом припою і витримуванням параметрів об’ємних виводів через гальванічне розростання, а також погіршення параметрів ВІС, особливо на МДН-структурах.
Щоб уникнути недоліків «мокрого» способу формування об’ємних виводів, використовують «сухий» спосіб. Його суть полягає в ультразвуковому приєднанні шариків із золотого дроту з наступною обрізкою дроту безпосередньо над шариком. «Сухий» спосіб простий і практично не впливає на параметри ВІС.
Об’ємні виводи формують на кристалах, які знаходяться в складі пластини до її розділення. При цьому «сухий» спосіб забезпечує вибірковість у формуванні об’ємних виводів: вони створюються на контактних площадках тільки придатних, попередньо провірених по електричним параметрам кристалів ВІС.
Приєднання носія може бути здійснено пайкою або термокомпресійною зваркою. Об’ємні золоті виводи на носії формують імпульсною зваркою із золотим покриттям мідної балки, а також лазерною імпульсною зваркою або зваркою.
Приєднувати мідні, покриті олово-вісмутом, балкові виводи поліімідного носія до контактних площадок кристалів складніше, так як мідь та алюміній технічно несумісні при мікрозварці та пайці. Тому перед їх з’єднанням на контактних площадках кристалу або ленточних виводах носія формують об’ємні виводи, на кристалі – золоті або припійні, на носії – золоті.
Поліамідні носії з алюмінієвими балковими виводами (рис 2.1) приєднують до алюмінієвих контактних площадок кристалів ВІС ультразвуковою мікрозваркою. В цьому випадку при взаємодії матеріалів виводу і контактної площадки утворюється надійне однокомпонентне мікрозварне з’єднання.
Рис. 2.1 Безкорпусна інтегральна мікросхема з виводами на поліамідному носії[2]
В олов’яне покриття мідних балкових виводів вводять вісмут (до 10%) або свинець (до 40%) з метою запобіганню утворення крихкої фази інтерметаліду
. При добавленні вісмуту товщина інтерметаліду після пайки при температурі 250ºС і часом витримки 30 с складає 0,5-2 мкм. Легування припою свинцем при пайці в таких же умовах приводить до утворення шару інтерметаліду товщиною 4-5 мкм, котрий сприяє утворенню міцних паяних з’єднань. Дальше збільшення його товщини викликає зменшення міцності.Перед приєднанням поліамідного носія або перед установкою на комутаційну плату пластина з кристалами ВІС закріплюється на еластичній адгезійній плівці і розділяється на окремі кристали на всю товщину, що виключає необхідність в подальшому розламування пластини, і об’ємні виводи не пошкоджуються.[5]
Метод лиття і пресування полягає у використанні пластмасових матеріалів, які мають високу текучість при порівняно низьких температурах і тисках, а також погану адгезію до стінок форми. У розплавленому вигляді матеріал пластмаси заповнює всі пустоти у литтєвій формі. Процес герметизації проводиться у трансферних машинах термореактивною або термопластичною пластмасою[3].
При герметизації цим методом кристал повинен бути змонтований на рамці, стрічці або гнучкому носії. У такому вигляді він завантажується в прес-форму. Нижню частину прес-форми закривають верхньою і вміщують між двома плитами-нагрівачами двоходового гідравлічного преса. При роботі пресу відбувається замикання верхньої і нижньої частин прес-форми і витискання рухливим плунжером-трансфером прес-матеріалу, який перейшов під дією температури і тиску у в’язко-текучий стан, із завантажувальної камери через литники у робочі гнізда.
Прес-матеріал повністю огортає арматуру мікросхеми. Цей метод герметизації досить простий, високопродуктивний, але дорогий [3]. Тому застосовується лише в багатосерійному виробництві.
Для герметизації невеликих партій виробів застосовують заливання під вакуумом [3]. Змонтовані кристали завантажують в спеціальні литтєві форми, які переміщаються вздовж операційної ділянки зливного автомата. У форми дозовано подається старанно перемішаний герметизуючий компаунд, потім проводять відкачування повітря для усунення пухирців повітря з компаунда. Після заливання при певних температурно-часових режимах проводиться затвердіння компаунда. Цей метод має низьку продуктивність.
При проектуванні електронних апаратів широко застосовують безкорпусні ІМС (БкІМС) призначені, як правило, для монтажу в ГІС або мікрозбірку із загальною герметизацією чи без неї [2]. Захист БкІМС здійснюють за допомогою лаків або інших діелектричних покриттів. За конструктивним виконанням БкІМС можуть бути із гнучкими виводами, зі стрічковими (павуковими) виводами на поліімідній плівці, з жорсткими виводами, на спільній пластині (не розділені) та ін. БкІМС монтують єдиним методом ТПМК. Для автоматизації складальних операцій найчастіше використовують БкІМС зі стрічковими виводами [2]. Кристал БкІМС установлюють на стрічковий носій, що забезпечує з’єднання між ІМС і виробом, в який БкІМС монтується, а також тепловідведення від кристала. БкІМС мають найменші значення перехідних опорів, паразитних індуктивностей та ємностей порівняно з будь-якими із типів корпусних ІМС. Пристрої на БкІМС мають найбільшу щільність монтажу [2]. Герметизацію пристроїв на БкІМС здійснюють на рівні мікрозбірок, ГІС або системи.
Функція захисту від кліматичних впливів, дій агресивних середовищ, атмосферного кисню, пилу, вологи, механічних і електромагнітних дій, вібрації покладається головним чином на корпус мікросхеми [4].
2.3 Корпусна герметизація
Для такої герметизації використовуються уніфіковані стандартні корпуси, перевагою яких є можливість автоматизації процесів складання, що знижує вартість мікросхеми.
Корпус – частина конструкції ІМС, яка призначена для її захисту від зовнішнього впливу і з’єднання із зовнішніми колами за допомогою виводів. Він має відводити теплоту, що виділяє ІМС, давати змогу перевіряти електричні параметри і застосовувати високопродуктивні, у тому числі автоматизовані процеси складання й монтажу ІМС в апаратуру. Його конструкція повинна забезпечувати надійну герметизацію і механічний захист напівпровідникових або гібридно-плівкових мікросхем. Корпус має також забезпечувати роботоздатність ІМС за підвищених (до 398 К (125 ºС)і вище) та знижених (до 214 К (-59 ºС)) температур [2]. Такі широкі функції корпусу жорстко регламентують перелік використовуваних матеріалів, а також основні конструктивно-технологічні рішення. Типи найпоширеніших корпусів наведено на рис 2.2.
Рис 2.2 Корпуси та кристалоносії інтегрованих мікросхем [2]:
а – корпуси;
б – кристалоносії;
1 – металокерамічний;
2, 4 – металоскляний;
3 – пластмасовий;
5 – кристалоносій з J-подібними виводами;
6 – кристалоносій з матричними виводами.
Перед зваркою ніжка з кристалом відпалюється в азоті при Т=200-300ºС на протязі 30 хвилин [6]. Металеві зовнішні виводи проходять через діелектричний матеріал (утворює остів корпусу) або бусинкові ізолятори. Це скло, кераміка або пластмаса. Другий елемент конструкції корпусу – штамповані металеві деталі, котрі забезпечують механічну міцність, екранування і тепловідвід. Для того, щоб уникнути виникнення механічних напруг при зміні температури в широкому інтервалі значень, зовнішні виводи й інші металеві елементи конструкцій виготовляються із ковару ( Ni – 29%, Co – 17%, Fe – 54% ). Зсередини металеві деталі часто покриваються тонким шаром золота [4].