Umвых=Im1ωавтL2,
где Im1- амплитуда первой гармоники коллекторного тока,
ωавт= – частота автоколебаний; амплитуда напряжения обратной связи Umвх=Im1ωавтМ, где М – взаимная индуктивность между катушками L1 и L2; коэффициент передачи цепи обратной связи
Ко.с.=
.2. Генератор с автотрансформаторной обратной связью.
Принципиальная схема приведена на рис. №5а.
Рис.№5а. Принципиальная схема автогенератора с обратной автотрансформаторной связью
Схема содержит колебательный контур второго вида L1C4, к трем точкам которого к, э, б соответственно подключены коллектор, эмиттер (через блокировочные конденсаторы большой емкости C2, C3) и база (через разделительный конденсатор C1) транзистора VT. Начальное смещение на базе транзистора задается делителем напряжения R1, R2. Элементы R3, C4 образуют цепь смещения, создаваемого падения на резисторе R3при протекании по нему постоянной составляющей эмиттерного тока.
Напряжение обратной связи Umвх=Uбэ снимаетсяс части витков катушки L1, которая одновременно служит делителем напряжения Uкб, действующего на контуре. Как видно из схемы, условие баланса фаз выполняется потому, что напряжение Uбэ всегда изменяется в противофазе с переменным напряжением на коллекторе Umвых= Uкэ. В этом можно убедиться, рассмотрев направление токов в ветвях контура L1C4. Индуктивность катушки L1 в точке э делится на Lкэ, образующую левую (индуктивность) ветвь контура, и на Lбэ, которая с конденсатором C4 образует первую (емкостную) ветвь. Так как точки iLиiC в ветвях параллельного контура в любой момент времени противоположны по направлению, напряжения Uбэ и Uкэ противофазны.
3.Автогенератор с емкостной обратной связью.
Схема такого генератора представлена на рис. № 5б.
Рис.№5 б. Принципиальная схема автогенератора с обратной емкостной связью
В этой схеме применен колебательный контур третьего вида L1C4C5, соединенный точками к, э, б соответственно через конденсаторы C3, C2 и C1с коллектором, эмиттером и базой транзистора VT. В автогенераторе применена схема параллельного коллекторного питания, колебательный контур и транзистор включены параллельно друг другу (схемах на рис. № 4а, 5а эти элементы включены последовательно, т.е. использовались схемы последовательного коллекторного питания). Для ослабления шунтирующего действия высокочастотные дросселя L2 на контур индуктивность дросселя выбирают исходя из соотношения L2=(10…20) L1.
Общую емкость контура составляют емкости двух конденсаторов: C4 и C5, причем C4 образует емкостную ветвь контура, а C5 и L1- индуктивную ветвь. Так как соответствующие токи iLиiC в любой момент времени направлены противоположно друг другу, напряжения Uкэ иUбэ противофазны. Следовательно, условие баланса фаз выполняется, поскольку напряжение Uбэ= Umвх, снимаемое с конденсатора C5, является напряжением обратной связи, а Uкэ= Umвых, снимаемое с C4, - выходным напряжением генератора.
3.2 Обобщенная трехточечная схема
Схемы одноконтурных автогенераторов (с трансформаторной, автотрансформаторной и емкостной обратной связью) и большинство других, более сложных схем, могут быть приведены к упрощенной, так называемой трехточечной схеме рис. № 6.
Рис.№6. Трехточечные схемы автогенераторов: а- обобщенная; в- индуктивная; в- емкостная
Такое обобщение упрощает анализ и помогает при составлении схем автогенераторов. Оно возможно благодаря общим требованиям к схемам автогенераторов. Заключающимся в обязательном выполнении условий самовозбуждения (баланс фаз, баланс амплитуд).
В обощенной схеме, изображенной на рис. № 6а, колебательная система, состоящая из трех реактивных сопротивлений Хкб, Хбэ, Хкэ (активными сопротивлениями в большинстве случаев можно пренебречь), подключена к транзистору в трех точках: к, б, э, что определило название схемы. Отдельные элементы колебательной системы могут быть конденсаторами, катушками или более сложными электрическими цепями, например расстроенными параллельными контурами. Условимся также, что сопротивления Хкб, Хбэ, Хкэ включает в себя индуктивности соединительных проводов, междуэлекродные емкости, емкость монтажа и т.д. Таким образом, колебательная система приводится к контуру, состоящему из трех реактивных сопротивлений, по которым протекает контурный ток Ik. В такой схеме автогенератора колебания могут возбудиться на собственной частоте данного контура f0 (точнее, на очень близкой к ней частоте), определяемой из условия резонанса, т.е.
Хкб+Хбэ+ Хкэ =0.
Пусть в некоторой момент времени ток Ik направлен так, как показано на рис. № 6 а. Этот ток создает колебательные напряжения Uбэ= Ik Хбэ иUкэ= Ik Хкэ, которые для выполнения условия баланса фаз должны быть противофазными, что возможно только, когда реактивные сопротивления Хбэ и Хкэ имеютодинаковый характер. Разумеется, характер третьего сопротивления Хкб должен быть противоположным характеру первых двух сопротивлений, образующих контур, иначе резонанс в контуре будет невозможным.
Правильно составленная схема автогенератора должна обеспечить выполнение условий баланса фаз и баланса амплитуд на частоте, близкой к собственной частоте колебаний в контуре. Необходимый для самовозбуждения коэффициент передачи цепи обратной связи, обеспечивающий выполнение условия баланса амплитуд, определяется соотношением Кос Sср Rрез = 1, или КосКус=1, а при самовозбуждении на частоте, близкой к f0, удовлетворяется также условие ψус+ ψо.с=0; 2π 4π; …
Коэффициент
Кос=
= =при самовозбуждении должен быть вещественным и положительным, т.е. >0, а это еще раз подтверждает, что реактивные сопротивления Хбэ и Хкэ обязательно должны быть одного знака.
Можно составить два варианта трехточечных схем: индуктивную рис. №6 б, в которой напряжение обратной связи снимается с катушки L1, и емкостную рис. № 6 в, в которой это напряжение снимается с конденсатора C1. Сравнивая рис. №6б и рис. № 6в убеждаемся, что генератор с автотрансформаторной обратной связью представляет собой индуктивную трехточечную схему, а генератор с емкостной обратной связью- емкостную трехточечную схему.
4. Автогенераторы типа RC
4.1 Целесообразность использования RC- генераторов на низких частотах
Генераторы с колебательным контуром незаменимы как источники синусоидальных высокочастотных колебаний. Для генерирования колебаний с частотами меньше 15…20 кГц они неудобны, так как колебательный контур получается слишком громоздким.
Другим недостатком низкочастотных LC – генераторов является трудность их перестройки в диапазоне частот. Все это обусловило широкое применение на указанных выше частотах RC- генераторов, в которых вместо колебательного контура используются частотные электрические RC-фильтры. Генераторы этого типа могут генерировать достаточно стабильные синусоидальные колебания в относительно широком диапазоне частот от долей герца до сотен килогерц. Они имеют малые размеры и массу, причем эти преимущества RC- генераторов наиболее полно проявляются в области низких частот.
4.2 Структурная схема RC-генератора
Данная схема изображена на рис. № 7.
Рис.№ 7. Структурная схема RC-автогенератора.
Схема содержит усилитель 1, нагруженный резистором и получающий питание от источника постоянного напряжения 3. Для самовозбуждения усилителя, т.е. для получения незатухающих колебаний, необходимо подать на его вход часть выходного напряжения, превышающее входное (или равное ему) и совпадающее с ним по фазе. Иначе говоря, усилитель необходимо охватить положительной обратной связью, причем четырехполюсник обратной связи 2 должен иметь достаточный коэффициент передачи. Эта задача решается в том случае, когда четырехполюсник 2 содержит фазосдвигающую цепь, состоящую из резисторов и конденсаторов сдвиг фаз между входным и выходным напряжениями 1800.
4.3 Принцип работы фазосдвигающей цепи
Схема которой показана на рис. № 8а, иллюстрируется с помощью векторной диаграммы рис. № 8б.
Рис.8. Фазосдвигающие цепи: а- принципиальная схема; б- векторная диаграмма; в,г- трехзвенные цепи
Пусть ко входу этой цепи RC подведено напряжение U1. Оно вызывает в цепи ток I, создающий падения напряжения на конденсаторе
UC=IXC=
(где ω-частота напряжения U1) и на резисторе UR=IR, которое одновременно является выходным напряжением U2. При этом угол сдвига фаз между током I и напряжением Uс равен 900, а между током I и напряжением UR – нулю. Вектор напряжения U1 равен геометрической сумме векторов UC и UR и составляет с вектором U2 угол φ. Чем меньше емкость конденсатора С, тем ближе угол φ к 900.