де
Переходячи у формулі (2.23) до СКВ випадкових похибок з урахуванням (2.24), одержимо вираз для обчислення СКВ сумарної випадкової похибки за її складовими
Звернемо увагу на те, що ця формула підсумовування випадкових похибок є універсальною, оскільки СКВ (і дисперсія) не залежить від закону розподілу похибок.
Відзначимо, що строго врахувати всі кореляційні зв’язки, а отже, і точно визначити коефіцієнт кореляції між похибками досить складно і не завжди можливо. Так, коефіцієнт кореляції між величинами
де
Застосування формули (2.25) потребує ускладнення експерименту і обчислювань. Тому вона не знаходить широкого практичного застосування, а для її спрощення користуються нижчевказаними рекомендаціями щодо задання коефіцієнта кореляції
За степенем корельованості випадкові похибки слід розділити лише на два види: сильно корельовані і слабко корельовані. Умовною границею між сильною і слабкою кореляціями випадкових похибок вважають умову
У практиці вимірювань здебільшого мають справу з незалежними випадковими похибками, для яких
Якщо СКВ похибки
де
Інколи для спрощення розрахунків переходять від підсумовування дисперсій (або СКВ) випадкових похибок до підсумовування максимальних (допустимих) значень абсолютних похибок
Формула для СКЗ сумарної випадкової похибки
Таким чином, арифметичне підсумовування використовується для грубої оцінки сумарної похибки, названої "оцінкою зверху" (або за максимумом), і при випадковому характері похибок. Воно зводиться до підсумовування максимальних значень окремих складових похибок. При такому підході передбачається, що всі складові випадкової похибки мають одночасно і максимальне значення, і однаковий знак. Очевидно, ймовірність такого збігу дуже мала, тому арифметичне підсумовування дає завищену оцінку сумарної випадкової похибки, і похибка цієї оцінки буде тим істотніша, чим більше число складових підсумовується. Тому арифметичне підсумовування випадкових похибок можливе при грубій оцінці сумарної похибки, коли вона містить 2-3 складових.
Переходячи в (2.28) до відносних похибок, маємо
де
При умові
де знак "+" означає, що для складових з позитивною кореляцією (
Зокрема, при підсумовуванні двох складових випадкової похибки, СКВ яких
тобто наявність жорсткої кореляції (
Таким чином, при виборі того або іншого методу (правила) підсумовування складових похибки визначальною ознакою є не розділ їх на систематичні і випадкові, а ступінь (рівень) кореляційних зв’язків: сильний або слабкий.
Якщо для складових випадкової похибки задано границі довірчих інтервалів
Якщо всі складові випадкової похибки підлягають однаковому закону розподілу і мають однакову довірчу ймовірність P, тоді
При нормальному законі розподілу всіх складових або при кількості складових n ³ 5 сумарна випадкова похибка має нормальний закон розподілу. Отже, її границі довірчого інтервалу з довірчою ймовірністю P можна визначити так: