Защита РЭС при их транспортировании в упаковочной таре осуществляется с помощью упаковочных виброизоляционных прокладок из различных материалов, пружин или стандартных виброизоляторов. При использовании упаковочных виброизоляционных прокладок необходимо осуществлять выбор их оптимальных геометрических размеров, так как, например, при недостаточной толщине прокладки возможно повреждение упакованного РЭС при воздействии удара, а выбор толщины прокладки больше необходимой для обеспечения защиты приведет к удорожанию упаковки из-за перерасхода виброизоляционного материала.
В настоящее время для изготовления прокладок, используемых в упаковочной таре, применяется гофрированный картон, пенополистирол, пенополиуретан и др. [ 20 ].
К характеристикам прокладок, определяющим эффективность защиты аппаратуры, относят их механические свойства, геометрические параметры (толщину и площадь), а также показатели ползучести материалов прокладок под нагрузкой с течением времени [24].
В качестве материала прокладки выбираем пенополиуретан ППУ-ЭМ-1.
Определение оптимальных размеров прокладок можно выполнить по методике [20]. Исходными данными при расчете являются:
- величина максимального ударного ускорения, м/с2 (g) 147 (15);
- предполагаемая высота падения в РЭС в упаковке, мм 500;
- масса РЭС, кг 5;
- геометрические размеры РЭС, м 0,483х0,295х0,264;
Упаковочные прокладки располагают снизу РЭС, а если необходимо, то сверху и с боковых сторон (рис.8.7).
Рис.8.7. Расположение прокладок при проектировании упаковки: 1- упаковываемый аппарат; 2 - прокладка; 3 - внешний контейнер.
Для расчета упаковочных прокладок используют номограммы [рис.6.23,20], разработанные для различных материалов.
Расчет оптимальных размеров прокладок производится по номограммам в следующей последовательности [20].
1. Определяется толщина прокладки Т.
2. Определяется требуемая площадь прокладки S. В нашем случае S = 900см2. Находим площадь опорной грани упаковываемого изделия Sо.г. Sо.г = 1424,85см2. Так как расчетное значение площади лежит в пределах Sо.г>S>0,5Sо.г, то изготавливаем четыре одинаковые прокладки, общая площадь которых равна S, поместив их по углам опорной грани.
Полученное значение толщины прокладки Т=90мм.
После определения размеров прокладок проверяем возможность местного выпучивания прокладки. Она осуществляется проверкой неравенства
Подставляя полученные значения в (8.36), получим
Так как неравенство (8.36) выполняется, то можно сделать вывод о том, что рассчитанные размеры и выбранный материал прокладки обеспечат защиту от транспортируемого изделия механических воздействий.
8.5 Расчет конструктивно-технологических параметров печатной платы. Выбор и обоснование методов изготовления печатной платы
8.5.1 Выбор и обоснование методов изготовления печатной платы
Метод изготовления печатной платы выбран на основании ОСТ 4 ГО 054. 043 и ОСТ 4 ГО 054. 058. В соответствии с ними существуют следующие методы: комбинированный (позитивный и негативный), химический, металлизация сквозных отверстий для изготовления многослойных печатных плат.
Исходя из особенностей электрической схемы, элементной базы разрабатываемого устройства и конструктивных характеристик печатных плат, изготавливаемых различными методами, выбираем комбинированный позитивный метод изготовления печатных плат.
Как было отмечено в техническом задании, схема электрическая принципиальная блока интерфейсных адаптеров разделена на семь функциональных блоков. Каждый блок размещен на отдельной печатной плате. Трассировка плат ведется по двум сторонам, что упрощает разводку проводников и позволяет уменьшить размеры печатной платы. Монтажные отверстия должны иметь металлизацию.
При разработке печатной платы следует учитывать следующие рекомендации:
- питающие проводники и «земля» должны иметь минимальное сопротивление и длину;
- «сигнальные» проводники должны иметь минимальные участки, где они проходят параллельно;
- размещение проводников на разных сторонах печатной платы желательно перпендикулярно или под углом 45°.
Особые требования при разработке печатных плат предъявляются к контактным площадкам и ширине проводников.
8.5.2 Расчет конструктивно-технологических параметров печатного монтажа
В данном разделе проводится расчет параметров печатного монтажа платы адаптера АРЛС. Двусторонняя печатная плата изготавливается комбинированным позитивным методом и имеет 3-й класс точности. Исходными данными являются: толщина фольги 35 мкм, максимальный ток через проводник 423 мА, максимальная длина проводника 0,6 м, допустимое падение напряжения на проводнике 0,2 В, максимальный диаметр выводов микросхем 0,5 мм, размеры платы 160х240 мм2, расстояние между выводами микросхемы 2,5 мм.
1.Определяем минимальную ширину, мм, печатного проводника по постоянному току для цепей питания и заземления:
, (8.37)
где:
Imax - максимальный постоянный ток, протекающий в проводниках;
jдоп - допустимая плотность тока, выбирается в зависимости от метода изготовления [ табл. 4.5, 25]. В нашем случае jдоп = 48 А/мм2;
t - толщина проводника, мм.
Подставляя значения в (8.37), получим:
мм.
2.Определяем минимальную ширину проводника, мм, исходя из допустимого падения напряжения на нем:
, (8.38)
где:
r - удельное объемное сопротивление.
Для нашего случая r = 0,0175 Ом·мм2/м [табл. 4.5, 25];
UДОП - допустимое падение напряжения.
Подставляя значения в (8.38), получим:
мм.
3.Определяем номинальное значение диаметров монтажных отверстий d:
, (8.39)где:
dЭ - максимальный диаметр вывода устанавливаемого ЭРЭ;
Ddн.о - нижнее предельное отклонение от номинального диаметра монтажного отверстия [табл. 4.6, 25]. Ddн.о = 0,1;
r - разница между минимальным диаметром отверстия и максимальным диаметром вывода ЭРЭ, ее выбирают в пределах 0,1...0,4 мм.
мм.4.Рассчитываем диаметр контактных площадок. Минимальный диаметр, мм, контактных площадок для ДПП, изготовляемых комбинированным позитивным методом:
при фотохимическом способе получения рисунка
, (8.40)где:
hф - толщина фольги;
Dmin - минимальный эффективный диаметр площадки:
, (8.41)где:
bм - расстояние от края просверленного отверстия до края контактной площадки;
dd и dp - допуски на расположение отверстий и контактных площадок.
dmax - максимальный диаметр просверленного отверстия, мм:
где:
Dd - допуск на отверстие.
В нашем случае bм = 0,035 мм, dp = 0,25 мм, dd = 0,1 мм, Dd = 0,05 мм [табл.4.6,25].
Подставляя значение Dd в (8.42), получим:
мм.Подставляя значения bм , dp, dd, dmax в (8.41), получим:
мм.Подставляя полученное значение D1min в (8.40), получим:
мм.Максимальный диаметр контактной площадки
. (8.43) мм.5.Определяем ширину проводников. Минимальная ширина проводников, мм, для ДПП, изготовляемых комбинированным позитивным методом:
при фотохимическом получении рисунка
где:
b1min - минимальная эффективная ширина проводника, b1min = 0,18 мм для плат 1-, 2-, 3-го класса точности. Подставляя значение b1min в (8.44), получаем
мм.Максимальная ширина проводников
. (8.45) мм6.Определяем минимальное расстояние между элементами проводящего рисунка.
Минимальное расстояние между проводником и контактной площадкой
, (8.46)где:
L0 - расстояние между центрами рассматриваемых элементов;
dl - допуск на расположение проводников. В нашем случае dl = 0,05 мм [табл.4.6, 25].
Подставляя значения в (8.46), получим:
Минимальное расстояние между двумя контактными площадками
. (8.47) мм.Минимальное расстояние между двумя проводниками