n - общее число элементов конструкции.
В наших расчетах используются комбинированные поправочные коэффициенты:
a1,2 - учитывающий одновременно температуру и электрический режим;
a3,4 - учитывающий одновременно кинематические и механические нагрузки.
Для определения поправочных коэффициентов aj, воспользуемся обобщенными таблицами и графиками [21].
Средняя наработка на отказ данного изделия определяется по (8.24)
. (8.24)Вероятность безотказной работы рассчитывается по (8.25)
. (8.25)Среднее время восстановления рассчитывается по (8.26)
(8.26)где:
qi - вероятность отказа из-за выхода из строя элемента i-ой группы;
k - число групп элементов.
Вероятность восстановления рассчитывается по (8.27)
(8.27)где:
t - заданное время восстановления.
Коэффициент готовности рассчитывается по (8.28)
(8.28)Коэффициент ремонтопригодности рассчитывается по (8.29)
. (8.29)Вероятность безотказной работы с учетом восстановления рассчитывается по (8.30)
. (8.30)Доверительные границы для наработки на отказ рассчитываются по (8.31)
; (8.31)где:
n = 10...15 - число отказов достаточных для определения надежности;
a = 0,9...0,99 - достоверность определения границ;
;l2 - функция, определяемая в зависимости от числа степеней свободы и доверительной вероятности.
Параметры надежности, полученные в результате расчета, сведены в табл.8.5
Таблица 8.5
Результаты расчета надежности
Параметры надежности | Значения |
Средняя наработка на отказ | 121112,6 |
Вероятность безотказной работы | 0,92 |
Среднее время восстановления | 0,3 |
Вероятность восстановления | 0,99868 |
Коэффициент готовности | 0,9999 |
Коэффициент ремонтопригодности | 0,0001 |
Вероятность безотказной работы с учетом восстановления | 0,98789 |
Доверительные границы для наработки на отказ | 264315,3...462586,5 |
Как видно из результатов расчета, приведенных в табл.8.5, полученные значения полностью соответствуют заданным в техническом задании.
8.4 Расчет механической прочности и системы виброударной защиты
Все виды РЭС подвергаются воздействию внешних механических нагрузок, которые передаются к каждой детали, входящей в конструкцию. Механические воздействия имеют место в работающей РЭС, если она установлена на подвижном объекте, или только при транспортировке ее в нерабочем состоянии, как в случае стационарной и некоторых видов возимой РЭС. При разработке конструкции РЭС необходимо обеспечить требуемую жесткость и механическую прочность элементов.
Под прочностью конструкции понимают нагрузку, которую может выдержать конструкция без остаточной деформации или разрушения. Повышение прочности конструкции достигается усилием конструктивной основы: контроля болтовых соединений, повышение прочности узлов методами заливки и обволакивания. Во всех случаях нельзя допустить образование механической колебательной системы.
8.4.1 Расчет собственных частот колебаний элементов
При расчете частот собственных колебаний конструкцию РЭС условно заменяют эквивалентными расчетными схемами, для которых известны аналитические зависимости. Основное условие замены состоит в том, чтобы расчетная схема возможно ближе соответствовала реальной конструкции и имела минимальное число степеней свободы. Так как резонансные частоты вредны для всех радиоэлементов, то при конструировании необходимо хотя бы приближенно определять частоты собственных колебаний элементов [22].
Частоту собственных колебаний резисторов с, закрепленных по способу Б (рис.8.4) можно определить по номограммам [рис.7.7, 22]. Значение собственной частоты резистора f0 = 7 кГц.
Рис. 8.4. Схема крепления резисторов.
При расчете частоты собственных колебаний микросхемы ее представляют в виде консольной конструкции (рис. 8.5).
Рис.8.5 Эквивалентная схема микросхемы.
В этом случае расчет собственной частоты колебаний микросхемы можно произвести по (8.32)
, (8.32)где:
Е - модуль упругости материала балки, Н/м2. В нашем случае Е = 0,7·1011 Н/м2;
М - сосредоточенная масса. В нашем случае М = 3г.
I - момент инерции балки, м4. Момент инерции для выводов микросхемы рассчитывается по (8.33)
, (8.33)где:
D - диаметр вывода ИМС. D = 0,5 мм.
м4.m - приведенная погонная масса. В нашем случае m = 0,015 г/мм.
Подставляя значения в (8.33), получим
кГц.Так как полученные значения частот собственных колебаний резистора и ИМС на много больше верхней частоты воздействующих вибраций (150 Гц), то можно сделать вывод о том, что элементы не будут усиливать колебания (коэффициент динамичности m в этом случае равен 1).
8.4.2 Расчет собственной частоты печатной платы
Применительно к печатной плате используется следующая формула для расчета собственной частоты:
Гц, (8.34)где:
Km - коэффициент, учитывающий материал, из которого выполнена плата;
Kb - коэффициент, учитывающий наличие ЭРЭ;
В - коэффициент, зависящий от варианта закрепления пластины и соотношения сторон
;h - толщина пластины.
, (8.35)где:
Е - модуль упругости материала, из которого выполнена плата;
r - плотность материала, из которого выполнена плата;
ЕS - модуль упругости для стали;
rS - плотность стали.
где:
mЭ - масса элементов;
mn - масса платы.
Печатная плата адаптера АРЛС выполнена из стеклотекстолита. Его плотность равна: r = 2 г/см3. Коэффициент, учитывающий материал Km = 0,74. Размеры платы (240х160х1,5)мм. Масса элементов - 87г.
По (8.37) определяем массу платы:
, (8.37)Подставляя значения в (8.37), находим:
г.Подставляя данные в (8.36), получим:
.Значение коэффициента В для способа закрепления платы, представленного на рис. 8.6, равно 93.
Рис. 8.6. Способ закрепления платы.
Подставляя значения в (8.34), получим значение собственной частоты платы адаптера АРЛС.
Гц.Печатная плата должна обладать значительной усталостной долговечностью при воздействии вибраций. Для этого необходимо, чтобы минимальная частота собственных колебаний плат удовлетворяла условию:
, (8.35)где:
b - безразмерная постоянная, выбирается в зависимости от величины частоты собственных колебаний и воздействующих вибраций, 35.
b - размер короткой стороны платы, 160мм.
nbmax - вибрационные перегрузки в единицах g, 3...10.
Гц.Условие (8.35) выполняется:
, таким образом, плата будет обладать достаточной усталостной долговечностью при воздействии вибраций.8.4.3 Расчет и выбор упаковочных виброизоляторов
Защита РЭС от механических воздействий при транспортировке является довольно сложной задачей, поскольку трудно учитывать случайные толчки, удары, определяемые профилем дороги, колебания отдельных частей транспортных средств и т.п. РЭС, размещаемые в кузове автомобиля, испытывают преимущественно вертикальные, а перевозимые по железной дороге - пространственные колебания (при трогании, торможении и движения состава амплитуда колебаний примерно одинакова по всем трем координатным осям) [23].