Смекни!
smekni.com

Беспроводные телекоммуникационные системы (стр. 6 из 13)

Ключевой момент в стандарте IEEE 802.16 – это понятие сервисного потока и связанные с ним понятия «соединение» и «идентификатор соединения» (CID). Сервисным потоком в стандарте IEEE 802.16 называется поток данных, связанный с определенным приложением. В этом контексте соединение – это установление логической связи на MAC-уровнях на передающей и приемной стороне для передачи сервисного потока. Каждому соединению присваивается 16-разрядный идентификатор CID, с которым однозначно связаны тип и характеристики соединения. Сервисный поток характеризуется набором требований к каналу передачи информации (к времени задержки символов, уровню флуктуаций задержек и гарантированной пропускной способности). Каждому сервисному потоку присваивается идентификатор SFID, основываясь на котором БС определяют необходимые параметры связанного с данным сервисным потоком конкретного соединения.

Основной принцип предоставления доступа к каналу в стандарте IEEE 802.16 – это доступ по запросу. Ни одна АС (абонентская станция) не может ничего передавать, кроме запросов на регистрацию и предоставление канала, пока БС не разрешит ей этого, т.е. отведет временной интервал в восходящем канале и укажет его расположение. АС может, как запрашивать определенный размер полосы в канале, так и просить об изменении уже предоставленного ей канального ресурса. Стандарт IEEE 802.16 предусматривает два режима предоставления доступа – для каждого отдельного соединения и для всех соединений определенной АС. Очевидно, что первый механизм обеспечивает большую гибкость, однако второй существенно сокращает объем служебных сообщений и требует меньшей производительности от аппаратуры. [7]


2. Системы сложных сигналов для телекоммуникационных систем

2.1 Спектры сигналов

Спектр сигнала s(t) определяется преобразованием Фурье

В общем случае спектр является комплексной функцией частоты ω. Спектр может быть представлен в виде

,

где |S(ω)| – амплитудный, а φ(ω) – фазовый спектр сигнала s(t).

Спектр сигнала обладает следующими свойствами:

1. Линейность: если имеется совокупность сигналов s1(t), s2(t), …, причем s1(t)

S1(ω), s2(t)
S2(ω), …, то сумма сигналов преобразуется по Фурье следующим образом:

,

где ai – произвольные числовые коэффициенты.

2. Если сигналу s(t) соответствует спектр S(ω), то такому же сигналу, смещенному на t0, соответствует спектр S(ω) умноженный на e-jωt0s(t-t0)

S(ω)e-jωt0.

3. Если s(t)

S(ω), то

4. Если s(t)

S(ω) и f(t)=ds/dt, то f(t)
F(ω)=jωS(ω).

5. Если s(t)

S(ω) и g(t)=∫s(t)dt, то g(t)
G(ω)=S(ω)/jω.

6. Если u(t)

U(ω), v(t)
V(ω) и s(t)=u(t)v(t), то

.

Сигнал находится по спектру с помощью обратного преобразования Фурье

.[4]

Рассмотрим спектры некоторых сигналов.

1. Прямоугольный импульс.

Рис.2.1. Спектр прямоугольного импульса.

2. Гауссовский импульс.

s(t)=Uexp(-βt2)

Рис.2.2. Спектр гауссовского импульса.

3. Сглаженный импульс

С помощью численного интегрирования находим спектр S(ω).

S(0)=2.052 S(6)=-0.056

S(1)=1.66 S(7)=0.057

S(2)=0.803 S(8)=0.072

S(3)= 0.06 S(9)=0.033

S(4)=-0.259 S(10)=-0.0072

S(5)=-0.221 S(ω)=S(-ω)

Рис. 2.3. Спектр сглаженного импульса.

2.2 Корреляционные свойства сигналов

Для сравнения сигналов, сдвинутых во времени, вводят автокорреляционную функцию (АКФ) сигнала. Она количественно определяет степень отличия сигнала u(t) и его смещенной во времени копии u(t - τ) и равна скалярному произведению сигнала и копии:

Непосредственно видно, что при τ=0 автокорреляционная функция становится равной энергии сигнала: Bu(0)=Eu.

Автокорреляционная функция четна: Bu(τ)=Bu(-τ).

При любом значении временного сдвига τ модуль АКФ не превосходит энергии сигнала |Вu(τ)|≤Bu(0)=Eu.

АКФ связана со спектром сигнала следующим соотношением:

.

Верно и обратное:

.

Для дискретного сигнала АКФ определяется в следующем виде:

и обладает следующими свойствами.

Дискретная АКФ четна: Bu(n)=Bu(-n).

При нулевом сдвиге АКФ определяет энергию дискретного сигнала:

.

Иногда вводят взаимнокорреляционную функцию (ВКФ) сигналов, которая описывает не только сдвиг сигналов друг относительно друга по времени, но и различие в форме сигналов.

ВКФ определяется следующим образом

для непрерывных сигналов и

для дискретных сигналов. [4]

Рассмотрим АКФ некоторых сигналов.

1. Последовательность прямоугольных импульсов

Рис. 2.4. АКФ последовательности прямоугольных импульсов.

2. 7-позиционный сигнал Баркера

Bu(0)=7, Bu(1)= Bu(-1)=0, Bu(2)= Bu(-2)=-1, Bu(3)= Bu(-3)=0, Bu(4)= Bu(-4)=-1, Bu(5)= Bu(-5)=0, Bu(6)= Bu(-6)=-1, Bu(7)= Bu(-7)=0.

Рис. 2.5. АКФ 7-позиционного сигнала Баркера.

3. 8-позиционные функции Уолша

Функция Уолша 2-го порядка

Bu(0)=8, Bu(1)= Bu(-1)=3, Bu(2)= Bu(-2)=-2, Bu(3)= Bu(-3)=-3, Bu(4)= Bu(-4)=-4, Bu(5)= Bu(-5)=-1, Bu(6)= Bu(-6)=2, Bu(7)= Bu(-7)=1, Bu(8)= Bu(-8)=0.

Рис. 2.6. АКФ функции Уолша 2-го порядка.

Функция Уолша 7-го порядка

Bu(0)=8, Bu(1)= Bu(-1)=-7, Bu(2)= Bu(-2)=6, Bu(3)= Bu(-3)=-5, Bu(4)= Bu(-4)=4, Bu(5)= Bu(-5)=-3, Bu(6)= Bu(-6)=2, Bu(7)= Bu(-7)=-1, Bu(8)= Bu(-8)=0.

Рис. 2.7. АКФ функции Уолша 7-го порядка.


2.3 Типы сложных сигналов