Рассмотрим решение этой задачи на примере различения сигналов со случайными начальными фазами. Такие сигналы описываются моделью
si(t; φ)=Re{
i(t)exp[j(2πf0t+φ)]},где f0 – известная центральная частота; φ – случайная начальная фаза с априорной ПВ W0(φ);
(t) =S(t)ejγ(t) – комплексная огибающая сигнала s(t), являющегося реализацией s(t; φ) при φ=0: s(t)=s(t; 0); S(t) и γ(t) – известные законы амплитудной и угловой модуляции. Применению правила МП должно предшествовать вычисление функции (функционала) правдоподобия (ФП) W(y(t)|Hi), т.е. усреднение ФП W(y(t)|Hi, φ), построенной для детерминированных сигналов с фиксированной фазой φ по всем ее возможным значениям с учетом априорной ПВ W0(φ). При равномерной ПВ фазы W0(φ)=1/(2π), |φ|≤π, с учетом равенства энергий всех различаемых сигналов W(y(t)|Hi) представляет собой модифицированную функцию Бесселя нулевого порядка:где c – коэффициент, содержащий сомножители, не зависящие от i, а
- модуль корреляции комплексных огибающих принятого колебания y(t) и i-го сигнала. Монотонность функции I0(·) на положительной полуоси позволяет перейти к достаточной статистике Zi и записать правило МП в видеТаким образом, оптимальный различитель М сигналов равной энергии со случайными начальными фазами должен вычислить все М величин Zi и, если максимальной из них является Zk, принять решение о присутствии в y(t) k-го сигнала. Это означает, что содержащимся в наблюдаемом колебании y(t) считается тот сигнал, комплексная огибающая которого имеет наибольшую по модулю корреляцию с комплексной огибающей y(t).
Точные формулы для вероятностей ошибок различения М произвольных сигналов достаточно громоздки даже при М=2, однако в приложениях чаще других встречаются ансамбли сигналов, ортогональных в усиленном смысле. Последнее означает, что любые два несовпадающих сигнала si(t; φi), sk(t; φk) ортогональны при любых значениях начальных фаз:
∫si(t; φi)sk(t; φk)dt=0 при любых φi, φk и i≠k,
или, что эквивалентно, ортогональны детерминированные комплексные огибающие этих сигналов:
.Условие ортогональности в усиленном смысле жестче обычного требования ортогональности, фигурировавшего ранее в применении к детерминированным сигналам. Так, два отрезка косинусоиды, сдвинутые на угол ±π/2, являясь ортогональными в обычном смысле, не ортогональны при изменении сдвига фаз, т.е. в усиленном смысле. В то же время сигналы, не перекрывающиеся по времени или по спектру, ортогональны и в усиленном смысле.
Если обратиться сначала к различению двух сигналов, нетрудно понять, что противоположная пара, минимизирующая Pош в классе детерминированных сигналов, в задачах, где начальные фазы сигналов случайны, неприемлема. Действительно, единственным признаком, по которому различаются противоположные сигналы, является знак, т.е. присутствие или отсутствие в начальной фазе слагаемого π. Однако, когда перед поступлением на различитель каждый из сигналов приобретает случайный фазовый сдвиг, попытки использовать начальную фазу, в качестве характерного признака сигнала, бессмысленны, и в различителе от неинформативной величины φ приходится избавляться. Таким образом, можно прийти к выводу, что в классе М≥2 сигналов со случайными фазами симплексные ансамбли оптимальными свойствами не обладают. Оптимальными же оказываются именно ансамбли сигналов, ортогональных в усиленном смысле: каждый из таких сигналов вызывает отклик на выходе только одного из фильтров приемной схемы, и поэтому перепутывание i-го сигнала с k-м произойдет лишь в том случае, когда огибающая шума на выходе k-го согласованного фильтра (СФ) будет иметь значение, превосходящее значение огибающей суммы сигнала с шумом на выходе i-го СФ. Нарушение условия ортогональности в усиленном смысле приведет к появлению реакции на i-й сигнал на выходе не только i-го, но и других СФ, например k-го, в результате чего выброс огибающей на выходе k-го СФ, больший значения Zi, станет более вероятным.
Чтобы найти вероятность перепутывания p01s0(t; φ) с s1(t; φ) при различении двух сигналов, необходимо проинтегрировать совместную ПВ Z0, Z1 при гипотезе H0W(Z0, Z1|H0) по области Z1>Z0. Для ортогональных в усиленном смысле сигналов величины Z0 и Z1 независимы, поэтому W(Z0, Z1|H0)=W(Z0|H0)W(Z1|H0). Одномерные же ПВ Z0 и Z1 известны: при истинности H0Z0 как огибающая суммы сигнала с шумом имеет обобщенную рэлеевскую ПВ; Z1 как огибающая только шума является рэлеевской случайной величиной. Перемножив эти ПВ, после интегрирования полученной ПВ W(Z0, Z1|H0) и с учетом очевидного равенства p01=p10 для полной вероятности ошибки различения двух равновероятных ортогональных в усиленном смысле сигналов со случайными фазами получим
Повторение рассуждений пункта 4.2. (для детерминированных сигналов) приводит к аддитивной границе
которой, как правило, и пользуются для оценки вероятности ошибки, если число равновероятных ортогональных в усиленном смысле сигналов М≥2. [9]
4.3 Расчет ошибок различения M сигналов с неизвестными неэнергетическими параметрами
Рассмотрим задачу различения «М» ортогональных сигналов с неизвестным временным положением в асинхронных системах связи с кодовым разделением каналов. Решение о наличии сигнала в канале выносится по методу максимального правдоподобия. Найдем вероятность ошибки различения с учетом выбросов шума на интервале возможных временных задержек сигналов.
Предположим, что имеется «М» абонентов системы связи, каждый из которых использует свой сигнал. Наибольшую помехоустойчивость при передаче информации в таких условиях обеспечивают симплексные сигналы. При М>>1 помехоустойчивость такой системы сигналов практически совпадает с помехоустойчивостью системы ортогональных сигналов, для которых
Здесь Ekf – энергия сигнала fk. Условие ортогональности, которое можно назвать «ортогональностью в точке», на практике требует системы единого времени для организации синхронной связи. В асинхронных системах используются ортогональные в усиленном смысле сигналы, для которых при всех значениях τk и τm
Если Rkm(τk, τm)<0.25 – 0.3, то можно считать ансамбль сигналов практически удовлетворяющим условию ортогональности.
Будем рассматривать систему сложных сигналов {fk(t)}, k=1…M ортогональную при произвольном сдвиге. Среди сложных сигналов весьма широкое применение получили фазоманипулированные (ФМ) сигналы с комплексной огибающей вида
где ai – код последовательности, u0(t) – форма огибающей элементарной посылки, Δ – ее длительность. В случае прямоугольной формы огибающей элементарной посылки автокорреляционная функция (АКФ) имеет вид:
Здесь R0(τ)=(1-|τ|/Δ). В окрестности максимума АКФ R(τ)= R0(τ)=(1-|τ|/Δ). На входе приемника после прохождения многолучевого канала полезный сигнал может быть записан как
δn – относительная задержка сигнала по лучу с номером n, τ – неизвестное время прихода, которое находится внутри интервала [T1,T2]. εn=An/A0 – относительная амплитуда «n»-го луча, параметр ν имеет смысл числа дополнительных лучей распространения. Относительные задержки δn>Δ, т.е. лучи разделяются при обработке сложного сигнала. При ν=0 сигнал имеет вид s(t)=A0f(t-τ0).
Рассмотрим алгоритм обработки. На вход приемника поступает смесь
x(t)=sk(t-τ0k)+η(t), (t
[0,TН]),где sk(t) – один из возможных сигналов, k=1…M, τ0k– временная задержка сигнала, η(t) – белый гауссовский шум с нулевым средним значением и спектральной плотностью мощности N0/2. Необходимо вынести решение, какой из M возможных сигналов присутствует на входе приемника. Рассмотрим приемник без компенсации многолучевости. Линейная часть такого приемника содержит М каналов, в которых формируются статистики вида