В полупроводниковых таймерах наибольшее распространение получили структуры, использованные в однотактных таймерах NE 555, LM 322 и программируемом XR 2240. Структура таймера КР1006ВИ1, аналогичного NE 555, показана на рис. 1.3,а. Эти таймеры состоят из четырех функциональных узлов: двух компараторов напряжения на входе, RS-триггера и инвертирующего усилителя мощности на выходе [6]. Внутренний резисторный делитель задает пороговые напряжения, равные 2Un/3 для компаратора А1 и Un/3 для компаратора А2. Длительность генерируемых выходных импульсов устанавливается внешней времязадающей цепью RtCt. Аналогичен NE 555 по структуре и параметрам таймер XR 320, разработанный фирмой Ехаг. Этот таймер, в отличие от NE 555, может управляться не только спадом, но и фронтом импульса. Кроме того, XR 320 в дополнение к низкоомному выходу имеет инверсный выход с открытым коллектором. Существенным преимуществом XR 320 является то, что времязадающий конденсатор Сt заряжается внутренним генератором постоянного тока, величину которого определяет внешний резистор Rt [6]. Благодаря этому напряжение на Сt увеличивается линейно, что важно для некоторых применений однотактных таймеров. Тем не менее, этот таймер используется сравнительно редко, не имеет такого схемотехнического обеспечения как NE 555 и обладает незначительными преимуществами по сравнению с последним. Наиболее удачной структурой таймера является использованная в LM322. Этот таймер, второй по массовости применения среди однотактных, существенно превосходит NE 555 по сочетанию параметров точности, быстродействия и потребления. LM322 часто относят к прецизионным, подразумевая под этим не столько его высокие точностные характеристики, сколько специфичность применения в аппаратуре. Таймер содержит источник опорного напряжения 3,15 В к которому подключается внешний времязадающий резистор. Применен только один компаратор быстродействие, которого можно увеличить, подключив дополнительный вывод N к источнику питания. Запускается таймер положительным фронтом импульса. Таймер LM322 существенно отличается от NE355 конструкцией выходного каскада. Хотя использованное в схеме включение транзистора VT2 и делает более универсальным выход таймера, для большинства применений предпочтительнее мощный выходной каскад, как в NE355.
Наиболее распространенным в современной микроэлектронной аппаратуре среди многотактных программируемых таймеров является XR 2240, полная функциональная схема которого приведена на рис.1.4 [6] Таймер состоит из трех основных узлов, выделенных штрихпунктирными линиями: однотактного таймера подобного NE 555; 8-разрядного двоичного счетчика и управляющего триггера. Двоичный счетчик и управляющий триггер питаются от внутреннего источника стабилизированного напряжения 6,3 В. Внутренний резисторный делительустанавливает на входах компараторов А1 и А2 пороговые напряжения переключения, равные 3Un/4 и Un/4 соответственно. Выходами двоичного счетчика являются открытые коллекторы транзисторов VT4-VT12. Триггер D10 управляет работой счетчика D2-D9 и триггера D1 в однотактном таймере, который в свою очередь управляет работой первого каскада D2 счетчика.
Для полного и правильного использования различных возможностей таймера КР1006ВИ1 необходимо знать назначение его выводов, характеристики и требования к выбору параметров времязадающих элементов.
Назначение выводов таймера КР1006ВИ1 (рис. 1.3,а) незначительно отличается от рассмотренного ранее для обобщенной структуры на рис. 1.2,а. Напряжение питания Un, подаваемое на вывод 8 и измеряемое относительно вывода 1, равно 5-16,5 В. Приращение потребляемого таймером тока на 1 В изменения напряжения питания равно 0,7 мА (рис. 1.5,а). Таймер способен отдать в нагрузку или принять из нее ток не более 200 мА, что позволяет управлять непосредственно лампочками и даже электромагнитными реле. Выходное сопротивление около 10 Ом как для низкого, так и для высокого уровней выходного напряжения. Запуск таймера осуществляется подачей на вывод 2 напряжения менее Un/3 (эту цепь обычно называют триггерным входом). По отношению к выходу этот вход является инвертирующим. Зависимость минимальной длительности Тn запускающего импульса от низкого уровня его напряжения U показана на рис. 1.5,6. При высоком напряжении на выводе 2 состоянием выхода таймера можно управлять с помощью компаратора А1 по выводу 6, называемому обычно пороговым входом (рис. 1.3,а). Относительно изменений выходного напряжения этот вывод является неинвертирующим входом таймера. Входной ток, втекающий для компаратора А1 (вывод 6) и вытекающий для компаратора А2 (вывод 2), не превышает 0,5 мкА. Для сброса таймера, т. е. установления на его выходе низкого напряжения, независимо от напряжения на выводах 2 и 6, используется вывод 4. Если напряжение на этом выводе меньше – равно 0,4 В, напряжение на выходе равно 0,1-0,2 В. При напряжении большем 1 В цепь сброса выключена и не влияет на работу таймера. Кроме низкоомного выхода (вывод 3) таймер имеет и вспомогательный высокоомный выход (вывод 7), представляющий собой открытый коллектор транзистора VT1 (рис. 1.3,а), Этот вывод обычно используется для организации обратной связи с выхода на входы (выводы 2 и 6) таймера. Допустимое изменение напряжения на выводах 2, 4, 6 и 7 лежит в пределах 0 - 16,5 В. В таймере имеется доступ через вывод 5 к входам внутренних компараторов, на которые поданы пороговые напряжения. Этот вывод от резисторного делителя позволяет дополнительно управлять работой таймера, изменяя пороговые напряжения компараторов при постоянном напряжении питания. Чтобы избежать влияния внешних помех и пульсаций напряжения питания на точность работы таймера рекомендуется шунтировать вывод 5 конденсатором емкостью около 0,01 мкФ.
В режиме прямой трансляции сигнала с входа на выход таймер может работать в диапазоне частоты до 10 МГц (рис. 1.5, д). Однако приводимое в справочных данных значение погрешности формирования временного интервала (табл. 1.1), равное 0,5%, измеряется обычно при формировании импульсов длительностью более 10 мкс. Время нарастания выходного напряжения таймера не превышает 100 нс [6].
Временные параметры этого однотактного таймера слабо зависят от изменений Uп и температуры (рис. 1.5,е) и полностью определяются схемотехникой внутренних компараторов и качеством биполярной технологии их изготовления. В таймерах, изготовленных, по КМОП-технологии (табл. П.1), отличающейся худшим согласованием параметров парных транзисторов. Зависимость характеристик от Un и температуры значительно выше, чем у таймеров, изготовленных по биполярной технологии.
Особенности применения таймера КР1006ВИ1 связаны с не идеальностью его параметров и схемотехникой узлов. Чтобы параметры времязадающей цепи RtCtне влияли на точность формирования временных интервалов, необходимо ограничить диапазон изменения сопротивления Rtи емкости Сt. Максимальное значение этого сопротивления определяется входным током компараторов, протекающим по выводам 2 и 6. Для формирования устойчивых временных интервалов достаточно выбрать максимальное сопротивление Rtиз условия что его максимальное значение должно быть меньшим отношения значений напряжения питания к входному току Расчеты дают его величину в 20 МОм при Un=10 В и Iвх=0,5 мкА. При включении таймера по схеме мультивибратора когда выводы 2 и 6 объединены, входные токи, втекающий по выводу 6 и вытекающий по выводу 2, частично взаимно компенсируются и таймер может сохранить работоспособность при несколько большем значении этого сопротивления. При включении таймера по схеме одновибратора для Rt=20МОм отдельные типы таймеров не будут выполнять требуемую функцию. Поэтому не рекомендуется использовать времязадающие резисторы с сопротивлением более 10 МОм.
Минимальное сопротивление Rt определяется максимально допустимым током, протекающим через внутренний транзистор VT1 таймера, при его насыщении. Хотя допустимый выходной ток по выводу 7 устанавливают обычно на уровне 100 мА, не рекомендуется использовать малые сопротивления Rt в сочетании с большими емкостями Сt. Объясняется это тем что при разряде конденсаторов Сt большой емкости транзистор VT1 не мгновенно переходит в режим насыщения, а через время ta. В течении этого времени транзистор работает в активном режиме и может выйти из строя из-за чрезмерной величины рассеиваемой на нем мощности. Поэтому при формировании малых временных интервалов рекомендуется ограничиться значением времязадающего резистора в l кОм и выбрать исходя из этого емкость С. Если же таймер применяется в схеме, где C=100 пФ, то сопротивление Rtможет быть уменьшено до 150 Ом, что для аппаратуры специального назначения должно подтверждаться соответствующими техническими условиями.
Минимальная емкость времязадающего конденсатора Ct должна быть значительно больше изменений собственной входной емкости таймера на выходах 2, 6 и 7, в зависимости от напряжения на них. Поскольку изменение входной емкости при перезаряде Ct не превышает нескольких пикофарад, не рекомендуется при формировании точных временных интервалов использовать Сt < 100 пФ. Можно применять конденсаторы Ctсколь угодно большой емкости, если их ток утечки пренебрежимо мал. Фактически же, чем больше емкость конденсатора, тем больше его ток утечки. Для нормальной работы таймера необходимо, чтобы ток утечки Ct не превышал зарядный ток через Rt. Для формирования точных (около l %) временных интервалов ток утечки через Ct должен быть более, чем на два порядка меньше зарядного тока.
Выходной инвертирующий усилитель таймера (рис. 1.3,а) работает в режиме АБ, вследствие чего на переходной характеристике возникает «полка» длительностью 10-20 нс при напряжении 1,5 В. Если таймер нагружен на быстродействующие ТТЛ-схемы (например, серий 130 или 533), то наличие такой «полки» недопустимо, так как она находится в их пороговой области и может вызвать ложное срабатывание логического элемента. Чтобы выровнять линию переходного процесса, необходимо выход таймера зашунтировать конденсатором емкостью около 100 пФ.