Рис.3
Пусть
где
Определим величину дисперсии ошибки слежения
где
приведем выражение к стандартному виду:
При увеличении
Под эквивалентной шумовой полосой следящей системы понимают полосу пропускания эквивалентной системы, имеющей прямоугольную АЧХ, одинаковое с исходной системой ее значение на нулевой частоте и одинаковую дисперсию на выходе при воздействии на входы систем белого шума (рис.4).
Рис.4. АЧХ исходной и эквивалентной систем.
Чтобы определить полосу пропускания
Отсюда
Использование значения эквивалентной шумовой полосы позволяет упростить вычисление дисперсии:
Если
где
Формулы для расчета эквивалентной шумовой полосы систем приведены в табл.1
Таблица 1. Формулы для расчета эквивалентной шумовой полосы.
| |
| |
| |
| |
| |
| |
Для решения задачи оптимизации необходимо определить структуру системы, предъявляемые требования и ограничения, накладываемые на систему, описать воздействия и возмущения, выбрать критерий оптимизации и метод.
Оптимизируем параметры kи2 и T1 в системе (рис.5), в которой задающее воздействие λ(t) – детерминированная функция, а возмущение ─ случайный процесс ξ(t).
В качестве критерия оптимизации используем критерий минимума среднего квадрата ошибки:
где
Рис.5. Структурная схема оптимизируемой системы.
Исходные данные:
Необходимо определить
Величина математического ожидания (динамической ошибки) определяется выражением
Величина дисперсии ошибки:
Для определения оптимальных значений параметров воспользуемся методом дифференцирования:
Из этого уравнения определяем
Подставив в исходное уравнение (6) вместо T1 его оптимальное значение (7) и продифференцировав по переменной kи2, найдем ее оптимальное значение
Пусть задающее воздействие является случайным процессом с нулевым математическим ожиданием и спектральной плотностью
Флюктуационная составляющая характеризуется спектральной плотностью
В качестве фильтра используется идеальный интегратор:
Найдем оптимальное значение коэффициента передачи интегратора
где
Продифференцируем (8) по
Радиотехнические системы работают в условиях многолучевого распространения радиоволн, поэтому при приеме сигнала наблюдается эффект замирания сигнала. Попадание на вход приемника мощной широкополосной помехи приводит к смещению рабочей точки характеристики активного элемента на нелинейный участок характеристики и в результате – к подавлению полезного сигнала мощной помехой. Сигнал на входе следящей системы пропадает, что эквивалентно размыканию контура. На структурной схеме (Рис.6) это явление можно отобразить введением двух ключей Кл1 и Кл2. Пропадание сигнала приводит к размыканию ключа Кл1 и переводу ключа Кл2 в положение 2, поскольку меняется характер флюктуаций.