БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИНФОРМАТИКИ И РАДИОЭЛЕКТРОНИКИ
Кафедра РТС
РЕФЕРАТ
На тему:
"Анализ качественных характеристик следящей системы"
МИНСК, 2008
Качество работы следящей системы оценивается следующими показателями качества: точности, запаса устойчивости и быстродействия.
По переходной характеристике могут быть оценены: быстродействие и перерегулирование, определяющее запас устойчивости.
Перерегулирование определяется как относительная величина максимального отклонения управляемой величины y(t) от установившегося значения в переходном процессе (рис.1):
Рис.1. Переходная характеристика.
Рекомендуемые значения перерегулирования составляют (10…30)%. Дополнительно к величине перерегулирования иногда задается число колебаний на длительности переходного процесса (от 1-2 до 3-4). По числу колебаний может быть качественно оценен запас устойчивости.
Быстродействие системы оценивается длительностью переходного процесса. Длительность переходного процесса – интервал времени от момента подачи на вход системы единичного сигнала, до момента, после которого выполняется неравенство (1).
где
Рис.2. Амплитудно-частотная характеристика замкнутой системы.
К частотным показателям качества относятся: запас устойчивости по фазе и амплитуде и показатель колебательности. Показателем колебательности называют абсолютный максимум АЧХ замкнутой системы (рис.2), отнесенный к ее значению на нулевой частоте. Для систем, содержащих интегрирующие звенья, у которых Н(0) = 1, показателем колебательности является абсолютный максимум АЧХ (рис.2):
Рекомендуемые значения показателя колебательности - 1,1…1.5.
Анализ установившейся (динамической) ошибки
Оценка показателей качества следящей системы производится при следующих типовых воздействиях:
Линейное воздействие имеет место, в частности, в системе слежения за задержкой при слежении за объектом, перемещающимся с постоянной радиальной скоростью, в системе ФАПЧ при постоянной частотной расстройке входного и опорного сигналов.
Квадратичное – при слежении за объектом, перемещающимся с ускорением, в системе ФАПЧ – при линейно изменяющейся частотной расстройке и т.д.
При проектировании систем возникает необходимость оценки ошибки слежения в установившемся режиме при полиноминальном входном воздействии, являющемся аппроксимацией реальных воздействий на ограниченном интервале времени. В зависимости от вида передаточной функции фильтра системы эта ошибка может иметь конечное значение или изменяться с течением времени.
Если ошибка имеет конечное установившееся значение, для ее оценки используют теорию преобразований Лапласа, в частности, теорему о предельном значении оригинала:
где
Если ошибка изменяется с течением времени, для ее расчета используется метод разложения ошибки по производным входного воздействия. Рассмотрим этот метод.
Величина
Передаточная функция связана с весовой функцией преобразованием Лапласа:
Представим задающее воздействие степенным рядом с ограниченным числом членов:
Подставив формулу (5) в (3), получим:
Если
где
Нетрудно видеть, что
С величиной коэффициентов ошибки связано понятие астатизма системы.
Порядок астатизма системы определяется индексом первого, отличного от нуля коэффициента ошибки. Если
Астатические системы обладают следующим свойством: если на вход системы с астатизмом k-го порядка подается входное воздействие, описываемое полиномом k-ой степени, значение ошибки в установившемся режиме постоянно и не равно нулю.
Если порядок астатизма больше степени полинома, установившееся значение ошибки равно нулю (
Порядок астатизма определяется числом интегрирующих звеньев в контуре следящей системы. Следовательно, для уменьшения ошибки необходимо увеличивать количество интегрирующих звеньев. Но это увеличение имеет ограничение, так как с увеличением числа звеньев ухудшается устойчивость системы (каждое интегрирующее звено вносит фазовый сдвиг, равный
Порядок астатизма также зависит от точки приложения воздействия (рис.3).
Рис.3. К определению порядка астатизма системы.
Если астатизм определяется по отношению к воздействию
Относительно