Класс локальных сетей 100BaseT, называемый также Fast Ethernet, появился относительно недавно: он был создан в 1992 году группой разработчиков, называемой Fast Ethernet Alliance (FEA). Фактически Fast Ethernet является «наследником» сетей стандарта 10BaseT, однако в отличие от них позволяет передавать данные со скоростью до 100 Мбит/с. Так же как и сети 10BaseT, локальные сети Fast Ethernet имеют звездообразную топологию и могут быть собраны с использованием кабеля различных типов, наиболее часто применяемым из которых является витая пара. В 1995 году данный стандарт был одобрен Институтом инженеров по радиотехнике и электронике (Institute of Electrical and electronic Engineers, IEEE) и вошел в спецификацию IEEE 802.3 (это расширение спецификации получило обозначение IEEE 802.3u), обретя тем самым официальный статус.
Поскольку класс сетей 100BaseT является прямым потомком класса 10BaseT, в таких системах используются стандартные для Ethernet протоколы передачи данных, а также стандартное прикладное программное обеспечение, предназначенное для администрирования локальной сети, что значительно упрощает переход от одного типа сети к другому. Предполагается, что в не столь отдаленном будущем эта технология вытеснит большинство действующих на сегодняшний день «устаревших» стандартов, поскольку в процессе разработки данной спецификации одной из основных задач являлось сохранение совместимости новой разновидности локальных сетей с различными типами кабеля, используемого в сетях старого образца, было создано несколько модификаций стандарта Fast Ethernet. Технология 100BaseTX подразумевает использование стандартной витой пары пятой категории, в которой задействовано только четыре проводника из восьми веющихся: два — для приема данных, и два — для передачи. Таким образом, сети обеспечивается двунаправленный обмен информацией и, кроме того, остается потенциальная возможность для дальнейшего наращивания производительности всей распределенной вычислительной системы. В сетях 100BaseT4 также используется витая пара, однако в ней задействованы все восемь жил проводника: одна пара работает только на прием данных, одна — только на передачу, а оставшиеся две обеспечивают двунаправленный обмен информацией. Поскольку технология 100BaseT4 подразумевает разделение всех передаваемых по сети данных на три независимых логических канала (прием, передача, прием-передача), пропорционально уменьшается частота сигнала, что позволяет прокладывать такие сети с использованием менее качественного и, следовательно, более дешевого кабеля 3 или 4 категории, наконец, последний стандарт в семействе Fast Ethernet носит наименование 100BaseFX. Предназначен он для работы с оптоволоконными линиями связи.
Максимальная длина одного сегмента в сетях 100BaseT (кроме подкласса 100BaseFX) не превышает 100 м, в качестве конечного оборудования используются сетевые адаптеры и концентраторы, поддерживающие этот стандарт. Существуют также универсальные сетевые адаптеры 10BaseT/ 100BaseT. Принцип их работы состоит в том, что в локальных сетях этих двух классов используются одинаковые линии с одним и тем же типом разъемов, а задача автоматического распознавания пропускной способности каждой конкретной сети (10 Мбит/с или 100 Мбит/с) возлагается на протокол канального уровня, являющийся частью программного обеспечения самого адаптера. Алгоритм работы такого устройства можно проиллюстрировать на простом примере. При включении компьютера, оснащенного сетевым адаптером 10BaseT/100BaseT, последний выдает в сеть сигнал, информирующий другие сетевые устройства о том, что он способен поддерживать скорость передачи данных до 100 Мбит/с. Если оборудование локальной сети (например, хаб, к которому подключен данный компьютер) обеспечивает аналогичную скорость соединения, оно генерируют ответный сигнал, после чего адаптер продолжает работать в режиме 100BaseT. Если отклика не поступает, сетевая карта автоматически переходит в режим передачи данных со скоростью 10 Мбит/с, то есть переключается на работу в стандарте 10BaseT[14].
Несмотря на все преимущества спецификации 100BaseT, такие сети по сравнению с более старыми реализациями Ethernet не лишены и ряда недостатков, унаследованных ими от своего прародителя — стандарта 10BaseT. Прежде всего, в моменты пиковой нагрузки, то есть в случае возникновения ситуации, при которой к ресурсам сети одновременно обращается более 50% всех узлов, на линии образуется хорошо знакомый пользователям 10BaseT «затор» — другими словами, сеть начинает заметно «тормозить». И во-вторых, если в распределенной вычислительной системе применяется комбинированная технология (одна часть сети работает со стандартом 10BaseT, другая — со стандартом 100BaseT), высокая скорость соединения будет возможна только на участке, поддерживающем пропускную способность в 100 Мбит/с. Поэтому даже если ваш компьютер оснащен сетевым адаптером 100BaseT, при обращении к удаленному узлу, оборудованному сетевой картой 10BaseT, скорость соединения не превысит 10 Мбит/с.
Чем быстрее растут вычислительные мощности современных персональных компьютеров, тем больше становится среднестатистический объем обрабатываемых с их помощью файлов. Соответственно возникает потребность в пропорциональном увеличении пропускной способности линий связи. В итоге это заметно ускорило процесс эволюции сетевых технологий: не успел окончательно прижиться стандарт 100BaseT, как ему на смену подоспел новый класс локальных сетей, позволяющих передавать информацию со скоростью до гигабита в секунду. Эти сети получили обозначение 1000BaseT и альтернативное название Gigabit Ethernet.
В архитектуре сетей1000BaseT используется топология «звезда» на базе высококачественного кабеля «витая пара» категории 5, в котором задействованы все восемь жил, причем каждая из четырех пар проводников используется как для приема, так и для передачи информации[15]. По сравнению с технологией 100BaseT, несущая частота в сетях 1000BaseT увеличена вдвое, благодаря чему достигается десятикратное увеличение пропускной способности линии связи. При переходе от стандарта 10BaseT или 100BaseT к 1000BaseT особые требования предъявляются к качеству монтажа сетевых розеток и разъемов: если сеть проложена в полном соответствии с существующими стандартами, она, скорее всего, сможет обеспечить требуемую скорость передачи данных, если же монтаж был выполнен с отклонениями от требований спецификации Ethernet, возникающие в соединениях помехи не позволят добиться расчетных характеристик. Как и в более ранних классах сетей XBaseT, длина одного сегмента Gigabit Ethernet не должна превышать 100 м.
Стандарт 1000BaseT был официально подтвержден Институтом инженеров по радиотехнике и электронике (Institute of Electrical and Electronic Engineers, IEEE) в 1999 году, и включен в спецификацию IEEE 802.3. В настоящее время оборудование для данного типа сетей выпускается несколькими независимыми производителями компьютерного «железа».
В таблице 3.2 приведены физические характеристики различных спецификаций Ethernet.
Таблица 3.2.
Стандарт | Физическая спецификация | Кабели, разъемы | Ограничения на длину физ. сегмента, м | Макс. число повторителей | макс. число станций | Диаметр сети, м |
Ethernet(IEEE 802.3i) | 10Base5(Thicknet) | Толстый коаксиалRG‑8/11, разъемы AUI | 500 min 2,5 м | 4 (2 сегмента без узлов) | 100 | 2500 |
10Base2 (Cheapernet) | Тонкий коаксиал RG‑58A/U, разъемы BNC | 185 (200)min 0,5 м | 30 | 925 | ||
10BaseTX | 2ВП UTP3-4-5, RJ-45 | 100 | 4 | 1024 | 500 | |
10BaseF | ОМ ОВ / ММ ОВ 62.5, разъемы ST | 1000/5000 | - | 2 | 1000/ 5000 | |
Fast Ethernet (IEEE 802.3u) | 100BaseTX | 2ВП UTP, STPType 1, разъемы RJ-45 | 100 | 1 класса I / 2 класса II (кабель между повторит. – до 5 м) | 1024 | 200-320 |
100BaseFX | ММ ОВ 62.5, 125 мкм, разъемы ST, SC | 160 (rep) /412 (полудуплекс)/ 2000 (полнодуплексн.) | ||||
100BaseT4 | 4ВП UTP3-4-5, RJ-45 | 100 | ||||
Gigabit Ethernet(802.3z) | 1000BaseLX | ММ ОВ / ОМ ОВ, разъемы ST, SC | 316 (550/3000) | - | 2 | 550/ 3000 |
1000BaseSX | ММ ОВ 62.5/50 мкм разъемы ST, SC | 275 (300/550) | - | 300/ 550 | ||
1000BaseCX | коаксиал, (ВП STP), RJ-45 | 25 | - | 25 | ||
(802.3ab) | 1000BaseT | ВП STP5-6 RJ-45 | 100 | - | 100 |
Стандарты Ethernet определяют проводные соединения и электрические сигналы на физическом уровне, формат пакетов и протоколы управления доступом к среде — на канальном уровне модели OSI. Ethernet в основном описывается стандартами IEEE группы 802.3. Ethernet стал самой распространённой технологией ЛВС в середине 90-х годов прошлого века, вытеснив такие технологии, как Arcnet, FDDI и TokenRing. Поскольку при технологии Ethernet все компьютеры локальной сети имеют возможность одновременного доступа к передающей среде, логическая топология является «шиной». Несмотря на изменение физической топологии в Fast Ethernet, при этом не изменился метод доступа к среде, следовательно, логическая топология также не изменилась.
Топология сети указывает не только на физическое расположение компьютеров, как часто считают, но, что гораздо важнее, на характер связей между ними, особенности распространения информации, сигналов по сети. Именно характер связей определяет степень отказоустойчивости сети, требуемую сложность сетевой аппаратуры, наиболее подходящий метод управления обменом, возможные типы сред передачи (каналов связи), допустимый размер сети (длина линий связи и количество абонентов) необходимость электрического согласования и многое другое. Более того, физическое расположение компьютеров, соединяемых сетью, почти не влияет на выбор топологии. Как бы ни были расположены компьютеры, их можно соединить с помощью любой заранее выбранной топологии (см. рис 4.1).