Мощность шума квантования выражается через величину шага квантования Dx:
Шаг квантования зависит от числа уровней квантования N:
Dx = Umax / (N-1)(1.8)
Из выражения (1.8) определим минимально возможное число уровней квантования:
Длина двоичного примитивного кода на выходе АЦП есть целое число:
m = log2 N .(1.10)
Поэтому число уровней квантования Nвыбирается как целая степень числа 2, при котором
N ≥ Nmin.(1.11)
Длительность двоичного символа (бита) на выходе АЦП определяется как
Тб = ТД / m.(1.12)
Среднее количество информации, передаваемое по каналу связи в единицу времени, - скорость передачи информации Ht определим по формуле
где
где
Скорость передачи отсчетов равна частоте дискретизации:
1.3 Модуляция
Вид модуляции выбираем так, чтобы скорость передачи информации после модуляции была не меньше производительности источника, т.е.
где
Для АМ, ФМ, ОФМ, КАМ
Для ОFDМ
где
тогда
После определения числа позиций сигнала М рассчитаем вероятности ошибки
Вероятность ошибки при АМ-М:
Вероятность ошибки при ФМ-М:
Вероятность ошибки при ОФМ-М:
Вероятность ошибки при КАМ-М:
где η – число уровней амплитуды;
α = η+1;
Вероятность ошибки при ОFDМ:
где η – число уровней амплитуды;
α = η+1;
Выбор метода модуляции осуществляется в соответствии с критерием минимума вероятности ошибки.
1.4 Выбор вида помехоустойчивого кода и определение длины кодовой комбинации
Помехоустойчивое, или избыточное, кодирование применяется для обнаружения и(или) исправления ошибок, возникающих при передаче по дискретному каналу. Отличительное свойство помехоустойчивого кодирования состоит в том, что избыточность источника, образованного выходом кодера, больше, чем избыточность источника на входе кодера. Помехоустойчивое кодирование используется в различных системах связи, при хранении и передаче данных в сетях ЭВМ, в бытовой и профессиональной аудио- и видеотехнике, основанной на цифровой записи.
Если экономное кодирование сокращает избыточность источника сообщений, то помехоустойчивое кодирование, напротив, состоит в целенаправленном введении избыточности для того, чтобы появилась возможность обнаруживать и(или) исправлять ошибки, возникающие при передаче по каналу связи.
Чтобы посчитать вероятность ошибки кодовой комбинации найдем параметры кода. К ним относятся:
n=m+k – длина кодовой комбинации;
m – число информационных символов(разрядов);
k – число проверочных символов (разрядов);
Особую важность для характеристики корректирующих свойств кода имеет минимальное кодовое расстояние dmin, определяемое при попарном сравнении всех кодовых комбинаций, которое называют расстоянием Хемминга.
В безизбыточном коде все комбинации являются разрешёнными, и, следовательно, его минимальное кодовое расстояние равно единице - dmin = 1. Поэтому достаточно исказиться одному символу, чтобы вместо переданной комбинации была принята другая разрешённая комбинация. Чтобы код обладал корректирующими свойствами, необходимо ввести в него некоторую избыточность, которая обеспечивала бы минимальное расстояние между любыми двумя разрешёнными комбинациями не менее двух - dmin> 2.
Минимальное кодовое расстояние является важнейшей характеристикой помехоустойчивых кодов, указывающей на гарантируемое число обнаруживаемых или исправляемых заданным кодом ошибок.
При применении двоичных кодов учитывают только дискретные искажения, при которых единица переходит в нуль (1 → 0) или нуль переходит в единицу (0 → 1). Переход 1 → 0 или 0 → 1 только в одном элементе кодовой комбинации называют единичной ошибкой (единичным искажением). В общем случае под кратностью ошибки подразумевают число позиций кодовой комбинации, на которых под действием помехи одни символы оказались заменёнными на другие. Возможны двукратные (t = 2) и многократные (t > 2) искажения элементов в кодовой комбинации в пределах 0 < t < n.
Минимальное кодовое расстояние является основным параметром, характеризующим корректирующие способности данного кода. Если код используется только для обнаружения ошибок кратностью t0, то необходимо и достаточно, чтобы минимальное кодовое расстояние было равно
dmin > t0 + 1.(1.29)
В этом случае никакая комбинация из t0 ошибок не может перевести одну разрешённую кодовую комбинацию в другую разрешённую. Таким образом, условие обнаружения всех ошибок кратностью t0 можно записать в виде:
t0 ≤ dmin - 1.(1.30)
Чтобы можно было исправить все ошибки кратностью tи и менее, необходимо иметь минимальное расстояние, удовлетворяющее условию:
В этом случае любая кодовая комбинация с числом ошибок tи отличается от каждой разрешённой комбинации не менее чем в tи + 1 позициях. Если условие (1.31) не выполнено, возможен случай, когда ошибки кратности t исказят переданную комбинацию так, что она станет ближе к одной из разрешённых комбинаций, чем к переданной или даже перейдёт в другую разрешённую комбинацию. В соответствии с этим, условие исправления всех ошибок кратностью не более tи можно записать в виде:
tи ≤ (dmin - 1) / 2 .(1.32)
Из (1.29) и (1.31) следует, что если код исправляет все ошибки кратностью tи, то число ошибок, которые он может обнаружить, равно t0 = 2∙tи. Следует отметить, что соотношения (1.29) и (1.31) устанавливают лишь гарантированное минимальное число обнаруживаемых или исправляемых ошибок при заданном dmin и не ограничивают возможность обнаружения ошибок большей кратности. Например, простейший код с проверкой на чётность с dmin = 2 позволяет обнаруживать не только одиночные ошибки, но и любое нечётное число ошибок в пределах t0 < n.
Длина кодовой комбинации n должна быть выбрана таким образом, чтобы обеспечить наибольшую пропускную способность канала связи. При использовании корректирующего кода кодовая комбинация содержит n разрядов, из которых mразрядов являются информационными, а k разрядов – проверочными.
Избыточностью корректирующего кода называют величину
откуда следует
Эта величина показывает, какую часть общего числа символов кодовой комбинации составляют информационные символы. В теории кодирования величину Bm называют относительной скоростью кода. Если производительность источника информации равна Ht символов в секунду, то скорость передачи после кодирования этой информации окажется равной
поскольку в закодированной последовательности из каждых n символов только m символов являются информационными.
Если в системе связи используются двоичные сигналы (сигналы типа "1" и "0") и каждый единичный элемент несет не более одного бита информации, то между скоростью передачи информации и скоростью модуляции существует соотношение