Смекни!
smekni.com

Анализ гидроакустических сетей (стр. 4 из 13)

В рассматриваемых сетях главная проблема состоит в том, чтобы получить текущее состояние каждого соединения в сети, чтобы остановиться на лучшем маршруте для пакета. Однако, состояние соединений является величиной постоянно меняющейся, в этом случае количество модификаций маршрутизации может быть очень высоко.

2.6 Протоколы управления доступом

Существуют различные протоколы управления доступом, которые могут использоваться, чтобы избежать информационной потери в ГА сетях, возникающей по причине коллизий. Рассмотрим MACA протокол и его разновидности.

MACA протокол заключается в использовании двух пакетов передачи сигналов имеющих названия: Request-to-Send (RTS) и Clear-to-Send (CTS). Когда абонент А хочет послать сообщение абоненту В, он сначала отправляет сигнал RTS. Если В получает RTS, то он посылает назад команду CTS. Как только А получает CTS, он начинает передачу пакета данных. Узлы могут исследовать канал на этапе обмена сигналами RTS-CTS. Информация о состоянии канала может использоваться, чтобы установить уровни мощности выводного сигнала и типа модуляции. Эти свойства MACA протокола необходимы для эффективной разработки подводных гидроакустических сетей.

Все это обеспечивает надежную связь с минимальным потреблением энергии и позволяет избежать коллизий. Обмен RTS-CTS увеличивает объем передаваемой информации, но сокращает количество повторных передач, что позволяет снизить объем передаваемой информации.

MACA протокол гарантирует надежность непрерывной связи на сетевом уровне. Если некоторые пакеты сообщения потеряны из-за ошибок, с узлов получателя будет подан запрос на повторную передачу пакетов. На высоко надежных линиях связи этот подход позволяет увеличить пропускную способность, так как это устраняет потребность посылать квитанции на каждый отправленный пакет. В случае, если передача идет через канал связи с низким качеством, сообщение будет содержать ошибочные пакеты. Восстановление ошибок в пакете данных на сетевом уровне будет требовать чрезмерной задержки.

Эффективность и надежность MACA протокола может быть значительно увеличена за счет создания надежных соединений между близко расположенными узлами. Для этой цели был предложен MACAW протокол, где квитанция передается после каждой успешной посылки. Включение дополнительного пакета в пересылке увеличивает потребление энергии, что в свою очередь уменьшает производительность системы. Однако для гидроакустических систем, при применении такого метода все равно наблюдается прирост производительности. Протокол MACAW не использует управление мощностью передачи и возникающие асимметрии в канале. Его эффективность при использовании управления мощностью передачи пока еще не исследована.


2.7 Методы запроса авто-повторений

Запрос авто-повторений (ARQ) используется, чтобы обнаружить ошибочных данных в процессе передачи по каналу связи и в случае их обнаружения осуществит повторную передачу пакетов, содержавших ошибки. Самая простая схема запроса авто-повторений, которая может быть использована в гидроакустическом канале это stop and wait RQ, где источник пакета ждет квитанции от узла адресата для подтверждения передачи пакета без ошибок. Так как канал не используется в течение времени между передачей пакета и приемом квитанции, эта ARQ схема имеет низкую производительность. В go back-N и селективном методах повторении ARQ , узлы передают пакеты и получают квитанции непосредственно в процессе передачи пакетов, поэтому требуют канал, поддерживающий полный дуплекс. Деление ограниченной пропускной способности ГА каналов на два канала реализации полного дуплекса может значительно уменьшать скорость передачи данных по физическому каналу. Однако, эффект от двух этих методов еще необходимо исследовать.

Схема селективного метода может быть модернизирована, чтобы работать в симплексных ГА каналах. Вместо подтверждения каждого пакета в процессе приема, получатель будет ждать пока не будут переданы N пакетов и после этого посылать квитанцию с номерами пакетов, полученных без ошибок. Соответственно, источник пакетов определит ошибочные пакеты по принятой квитанции и пошлет другую группу N пакетов, которая будет содержать повторно передающиеся и новые пакеты.

Подтверждения могут быть обработаны двумя возможными способами. В первом подходе, который называется “положительное подтверждение”, в случае приема пакета, не содержащего ошибок, узел адресата пошлет квитанцию исходному узлу. Если источник не получает квитанцию исходному узлу. Если источник не получает квитанцию за заданный промежуток времени, то он повторно передаст этот пакет данных. В случае отрицательного подтверждения, адресат посылает квитанцию, если получает поврежденный пакет или не получает его вообще. Отрицательное подтверждение может помогать сохранять энергию, устраняя потребность посылать квитанции каждый раз и повторно высылать пакеты данных в случае потери квитанции. Когда объединяют MACA протокол и отрицательную схему подтверждения, обеспечивается высокая надежность связи между узлами источника и получателя в процессе обмена RTS-CTS.

2.8 Пример разработки: сеть SeaWeb

Примером реализации подводной акустической сети служит Telesonar – программа американского флота и SeaWeb.

Telesonar соединяет распределенные подводные узлы, объединяет их в один ресурс, обрабатывает информацию и передает ее в подводное боевое пространство. SeaWeb обеспечивает передачу команд, управление, связь и навигационную инфраструктуру для координирования автономных узлов с целью выполнения поставленных задач в любой точке подводной среды. Организация сети SeaWeb подходит для океанографической телеметрии, подводного управления транспортными средствами и других целей.

Telesonar и SeaWeb экспериментально исследует многие аспекты проблем распространения, передачи сигналов, преобразования, организации сети и защиты передачи. Были проведены испытания SeaWeb 98, 99 и 2000.

2.9 Цели эксперимента и подход

Telesonar формирует цифровую сеть с использованием стационарных и подвижных узлов. Соединения telesonar-а должны быть ситуационно адаптивными в условиях двунаправленной асимметрии. SeaWeb опирается на сеть, состоящую из автономных стационарных узлов (например, датчиков, повторителей, управляющих узлов). Управляющие узлы собирают данные с узлов датчиков и отправляют на шлюзы и наоборот. Внешние устройства SeaWeb включают подвижные станции. Шлюзы SeaWeb соединяются с погруженными командными центрами и могут быть расположены на плаву, на берегу, на поверхности, организуя доступ к наземным, бортовым и другим внешним сетям. Точно так же субмарины могут обращаться к внешним системам и осуществлять передачу сигналов в систему telesonar. Сервер SeaWeb постоянно находится в командных центрах и обеспечивает интерфейс к подводной сети.

Развитие SeaWeb осуществляется за счет накопления опыта в длительных океанских экспериментах. Ежегодные эксперименты в системе SeaWeb необходимы, чтобы развивать критические области технологии, чтобы улучшить функциональные возможности и качество службы. Цель экспериментов SeaWeb состоит в том, чтобы проверять telesonar соединения, работу в сети, ее конфигурациях, использование различных видов и алгоритмов организации сети.

В долгосрочной перспективе, цель состоит в том, чтобы обеспечить сеть возможностью самостоятельно конфигурироваться с соединениями между узлами, адаптирующимися в изменяющейся среде посредством автоматического выбора оптимума параметров передачи.

Область развертывания сетей SeaWeb 98, 99 и 2000 –это воды залива Buzzards, штата Массачусетс.

Развитие системы SeaWeb требует обратить внимание на основные проблемы, возникающие в канале передачи, асинхронной организации сети, эффективности и стоимости. Знание фундаментальных ограничений технологии telesonar приводит к разработке все более и более сложных модемов. Система SeaWeb использует MACA протокол установления связи, замечательно подходящий для радио полудуплексной организации сети. Процесс процедуры установления связи позволяет осуществлять адресацию, определять расположение абонента, оценивать канал, управлять мощностью передачи.


2.10 Инициализация и маршрутизация

Алгоритм инициализации в рассматриваемой сети необходим, чтобы установить предварительные подключения. Этот алгоритм основан на опросе, он гарантирует обеспечение связи со всеми узлами, акустически достижимыми, по крайней мере, одним из близких к нему узлов. В течение инициализации узлы создают таблицы соседей. Эти таблицы содержат список соседей каждого узла и качественной меры их соединения, которая может быть получена путем передачи тестового пакета от соответствующего соседа. Эти таблицы собираются главным узлом, и в нем производится формирование дерева маршрутизации.

Оптимальные маршруты определяются с помощью протокола маршрутизации на основе алгоритма. Протокол маршрутизации пробует максимизировать срок службы питающейся от батареи сети, путем минимизации полного потребления энергии сетью. Минимальная энергия, требуемая чтобы установить надежную связь между двумя узлами, используемая как метрическое расстояние между узлом-отправителем и узлом-получателем. Главный узел собирает информацию от сетевых узлов, определяет оптимальные маршруты и посылает информацию маршрутизации узлам.

Эффективность акустических соединений между узлами может ухудшаться и даже пропадать, по причине отказа узла. В таких случаях, сеть должна самостоятельно адаптировать себя к изменяющимся условиям без прерывания передачи пакета. Эта ошибкоустойчивость может быть получена путем постоянного обновления маршрутов.