Описание почвенного профиля чернозема выщелоченного тяжелосуглинистого, отобранного на целине. Шурф №2.
А0 --------- Травянистый войлок; состоит из не разложившихся растительных остатков. Окраска черная. Структура мелко комковатая, более или менее правильной формы, поверхность ровная, грани не выражены, размер агрегатов 7-5 мм. Сложение рыхлое. Большое количество корней многолетних травянистых растений.
А ---------- Гумусово-аккумулятивный. Окраска черная. Структура ореховатая, размер агрегатов от 10 до 7 мм. Сложение плотное. Новообразования в виде корней растений.
АВ --------- Переходный, горизонт гумусовых затеков. Окраска языков серая, а горизонта В темно-бурая, Структура столбовидная, от 3 до 5 см – отдельности слабо оформлены, с неровными гранями и округленными ребрами. Сложение очень плотное. Новообразований нет.
В---------- Иллювиальный, выщелоченный от карбонатов горизонт. Окраска темно-бурая. Структура крупнопризматическая, размер агрегатов 5-3 см, грани хорошо выражены, с ровной глянцевой поверхностью, с острыми ребрами. Сложение очень плотное. Новообразований нет.
Вк---------- Карбонатный. Окраска коричневая. Структура столбчатая – правильной формы с довольно хорошо выраженными гладкими боковыми и вертикальными гранями, размер < 3см. Сложение очень плотное. Карбонаты вскипают от 2% HCl на глубине 80-90 см, встречаются в виде белоглазки и присыпки. Включения в виде гальки.
Описание почвенного профиля чернозема выщелоченного тяжелосуглинистого, отобранного на пашне. Шурф №3.
Апах-----------Пахотный горизонт, расположенный с поверхности на пахотных землях, образуется за счет поверхностных слоев почв в него входит весь гумусовый горизонт. Окраска черная. Структура зернистая, размер агрегатов 3-1мм. Сложение рыхлое. Новообразования в виде корневых остатков злаковых растений.
АВ --------- Переходный, горизонт гумусовых затеков. Переход в горизонт В виде «кармана». Окраска темно-серая. Структура крупноореховатая. Сложение плотное. Новообразований нет.
В---------- Иллювиальный, выщелоченный от карбонатов горизонт. Окраска коричневая. Структура крупнопризматическая, размер агрегатов 5-3 см. Сложение плотное. Включения в виде гальки. Переход в горизонт Вк постепенный.
Вк---------- Карбонатный. Окраска коричневая. Структура крупнопризматическая. Сложение очень плотное. Карбонаты начинают вскипать на глубине от 85 см, встречаются в виде белоглазки. Включений нет.
Описание почвенного профиля чернозема выщелоченного тяжелосуглинистого, отобранного на пашне. Шурф №4.
Апах-----------Пахотный горизонт, расположенный с поверхности на пахотных землях, образуется за счет поверхностных слоев почв в него входит весь гумусовый горизонт А. Окраска темно-серая. Структура зернистая, размер агрегатов 3-1мм. Сложение рыхлое. Новообразования в виде корневых остатков злаковых растений.
АВ --------- Переходный, горизонт гумусовых затеков. Переход в горизонт В извилистый в виде затеков. Окраска черная, местами темно-бурая. Структура крупноореховатая. Сложение плотное. Включения в виде гальки на глубине 70 см.
В---------- Иллювиальный, выщелоченный от карбонатов горизонт. Окраска коричневая. Структура крупнопризматическая, размер агрегатов 5-3 см. Сложение очень плотное. Включения в виде гальки на глубине 80 см. Переход в горизонт Вк постепенный.
Вк---------- Карбонатный. Окраска коричневая. Структура крупнопризматическая. Сложение очень плотное. Карбонаты начинают вскипать на глубине от 90 см, встречаются в виде присыпки. Включений нет.
Ход определения:
Выбирают типичную для почвенных условий площадку и врезают в почву на глубину 5-10 см металлическую или деревянную раму размером 25´25 см и высотой 20-25см. Вокруг рамы врезают вторую раму 50´50 см такой же высоты. Почву у стенок рамы уплотняют. Внутри каждой рамы устанавливают линейку, чтобы по ней следить за уровнем воды.
Вначале опыта одновременно наливают в обе рамы воду слоем 5 см. В дальнейшем непрерывно поддерживают постоянный напор воды (5 см) в обеих рамах, подливая ее мерными кружками, цилиндрами
Учитывают расход воды по внутренней раме. Первый учет подливаемой воды проводят через 2 минуты после начала опыта, затем через 3 минуты, далее через 5-10 минут. С уменьшением расхода воды интервалы увеличивают до 30 минут и 1 часа.
Наблюдения за водопроницаемостью ведут до более или менее постоянной скорости впитывания, на не орошаемых участках не менее 3 часов, на орошаемых – 6 часов.
Для каждого интервала времени водопроницаемость вычисляют по формуле:
часы
Рисунок 5 – Изменение во времени водопроницаемости чернозема выщелоченного среднесуглинистого (по Н.Ф. Созыкину).
Затем по шкале М.А. Качинского оценивают водопроницаемость почв (таблица-5).
Таблица 5 - Шкала оценки водопроницаемости почв по М.А. Качинскому
Оценка | Водопроницаемость в 1 час впитывания, мм водного столба. |
ПровальнаяИзлишне высокаяНаилучшаяХорошаяУдовлетворительнаяНеудовлетворительная | > 1000 мм.1000-500 мм.500-100 мм.100-70 мм.70-30 мм.< 30 мм. |
Эрозия почв, как фактор деградации почвенного покрова и экологической опасности оценивается, прежде всего, интенсивностью смыва и объёмом перемещаемого почвенного субстрата. Проектирование противоэрозионных и почвозащитных мероприятий требует количественных оценок этих показателей, которые получают в настоящее время с помощью опытно – статистических моделей эрозий. Наиболее точно интенсивность эрозии оценивается многолетними наблюдениями на стоковых площадках, служащих основной базой при разработке количественных моделей. Однако на территории России до 80-х годов не проводилось регулярных наблюдений за смывом почв при выпадении осадков. Все модели опираются на региональные данные и требуют проверки альтернативными методами.
Настоящий раздел посвящён разработке модели зависимости водопроницаемости гумусового аккумулятивного горизонта от структурности почвы.
Водопроницаемость эродированных почв значительно убывает по сравнению с почвами не эродированными. Сокращение водопроницаемости эродированных почв объясняется ухудшением их водно – физических свойств. Они обладают меньшим количеством водопрочных агрегатов, поэтому в процессе выпадения осадков в поверхностном слое агрегаты быстро разрушаются и почва оплывает. Пылеватые частицы забивают поры, вследствие чего на поверхности образуется уплотнённый слой (почвенная корка), который препятствует впитыванию воды в почву. Суммарное количество воды поглощённой выщелоченным чернозёмом на слабо эродированной почве на 28 %, на средне эродированной – 34 % и на сильно эродированной – 53 % меньше, чем на не эродированной почве.
М.Н. Заславский (1970) в своей работе приводит данные по водопроницаемости неэродированных и сильноэродированных чернозёмов (таблица 6).
Таблица 6-Водопроницаемость неэродированного и сильноэродированного чернозёма выщелоченного на разных экспозициях склона
ЭкспозицияСклона | Степень смытостиПочвы | МощностьгоризонтовА+В, см | Содержаниегумуса в слое0 – 50 см | Скорость впитывания,мм/мин | |||||
% | % отнесмытой почвы | 5 | 10 | 20 | 30 | 60 | |||
Юго-западнаяВосточная | Несмытыесильно-смытыенесмытыесильно-смытые | 80288420 | 3,00,52,80,8 | 1001710028 | 6,05,03,52,0 | 3,02,52,51,5 | 2,51,02,00,8 | 2,01,01,50,5 | 1,50,51,00,3 |
У сильно смытых почв мощность гумусового горизонта в 3 – 4 раза меньше, чем у не смытых; значительно сокращается содержание гумуса в верхнем горизонте почвы; увеличивается объёмный вес почвы. Всё это взаимосвязано и приводит к значительному сокращению водопроницаемости сильноэродированных почв. Установившаяся к концу первого часа опыта скорость впитывания на сильно смытых почвах в 3 – 4 раза меньше, чем на несмытых.
Увеличение смытости гумусового горизонта у чернозёма на 1 % приводит к увеличению коэффициента стока тоже на 1%, а при смытости всего гумусового горизонта коэффициент стока увеличивается приблизительно в 2 раза.
Г.И. Швебсом (1974) были поставлены опыты по изучению влияния смытости почв на впитывание методом искусственного дождевания, когда все прочие условия, включая влажность почвы, были примерно одинаковые (таблица 7).
Таблица 7-Водопроницаемость почв различной степени смытости при интенсивности дождевания 1,50 мм/мин