Переходные процессы рассчитывают для замкнутых АСР по возмущающему или управляющему воздействиям. Если по возмущению, то регулятор должен в течении переходного процесса компенсировать это возмущение, а объект - возвратиться в то же состояние, в котором он был до приложения возмущения. Если по управлению, то регулятор должен отработать управляющее воздействие и регулируемая величина на выходе объекта должна принять новое, заданное значение.
При использовании для построения переходных процессов любых методов (аналитические, численные) в качестве исходного материала необходимо иметь математическую модель замкнутой системы в форме передаточной функции, дифференциального уравнения или уравнений АФХ, которые можно получить из передаточной функции.
Если передаточная функция замкнутой системы приведена к дифференциальному уравнению с произвольной правой частью, то аналитическое решение ищется в такой последовательности:
- находятся корни характеристического уравнения;
- строится частное решение с неопределенными коэффициентами;
- это частное решение подставляется в исходное уравнение;
- посредством приравнивания коэффициентов при одинаковых степенях х находятся все неопределенные коэффициенты;
- записывается искомое частное решение.
Это решение и будет являться зависимостью выходной координаты системы от времени.
При использовании численных методов для построения переходных процессов необходимо:
- передаточную функцию замкнутой системы преобразовать в дифференциальное уравнение, разложив при этом звено запаздывания в ряд Паде;
- дифференциальное уравнение n порядка привести к системе из n дифференциальных уравнений первого порядка;
- задать уравнение для возмущающего воздействия;
- выбрать один из численных методов для решения полученной системы; предпочтительнее методы с итерационным уточнением решения на каждом шаге (усовершенствованный метод Эйлера-Коши) или с автоматическим выбором величины шага для обеспечения требуемой точности (метод Рунге-Кутта);
- составить программу для ЭВМ или использовать стандартную из состава математического обеспечения.
Ниже представлены графики переходных процессов по управлению и возмущению систем с П, И и ПИ-регуляторами. Графики построены в системе MathCad.
11. Оценка качества функционирования АСР
Как всякая динамическая система, АСР может находиться в одном из двух режимов – стационарном (установившемся) и переходном. Стационарный режим может быть двух типов: статический и динамический. В статическом режиме, при котором все внешние воздействия и параметры системы не меняются, качество управления характеризуется точностью.
Исчерпывающее представление о качестве переходного процесса дает, естественно, сама кривая процесса. Однако при разработке АСР необходимо иметь возможность судить об основных показателях качества переходного процесса без построения их кривых, по каким-либо косвенным признакам, которые определяются более просто и, кроме того, позволяют связать показатели качества непосредственно со значениями параметров АСР. Такие косвенные признаки называются критериями качества переходного процесса.
Существуют три группы критериев качества: корневые, интегральные и частотные.
Группа корневых критериев основана на оценке качества переходного процесса по значениям полюсов и нулей передаточной функции АСР. В частном случае, когда нулей нет, качество переходного процесса определяется только полюсами.
Переходный процесс в устойчивой системе распадается на затухающие и колебательные составляющие. Если найти длительность самой длительной составляющей и величину колебательности самой колебательной составляющей, то по ним можно оценить верхние пределы величин длительности и колебательности всего переходного процесса.
Интегральными критериями качества называются такие, которые одним числом оценивают и величины отклонений, и время затухания переходного процесса. Такие критерии качества используются для определения оптимальных значений варьируемых параметров по минимуму значения соответствующей интегральной оценки. Применяются интегральные критерии обычно в теории оптимальных систем.
Наибольшее распространение получили частотные критерии, в основу которых положено использование частотных характеристик.
Рассмотрим некоторые критерии качества работы АСР:
1) статическая ошибка – это величина отклонения выходного параметра от заданного значения в установившемся режиме:
если в числителе передаточной функции системы нет свободного члена, то статическая ошибка равна нулю;
2) динамическая ошибка ∂y – это максимальное отклонение от установившегося значения в переходном процессе;
3) время регулирования – это время tр, за которое выходная координата системы вошла в зону допустимой погрешности регулирования 2∙δ, где δ определяется следующим образом:
4) величина перерегулирования:
5) степень затухания:
учитывая, что
; с данным критерием тесно связан еще один параметр – степень колебательности системы ; данные критерии взаимосвязаны следующими соотношениями:проведя небольшой анализ приведенных соотношений, можно выделить два крайних состояния системы: а) апериодический процесс ψ=1, m=∞; б) незатухающие колебания ψ=0, m=0; часто в расчетах применяют ψ=0.75, m=0.221; все системы регулированию рассчитываются с заданным значением либо ψ, либо m.
АСР считается оптимально настроенной системой, если она удовлетворяет двум или трем критериям качества, например, динамическая ошибка, степень затухания и время регулирования удовлетворяют заданным значениям.
Определим критерии качества для замкнутой АСР по возмущению с П-регулятором. Исходя из графика переходных процессов, статическая ошибка составляет
, динамическая ошибка: .Чтобы определить время регулирования, рассчитаем сначала допустимую погрешность регулирования:
.Таким образом, время регулирования имеет следующее значение
.Вычислим величину перерегулирования:
.Воспользовавшись заданным значением степени колебательности системы регулирования, определим степень затухания:
.Аналогично рассчитываем прямые показатели оценки качества для систем с И и ПИ-регуляторами. Результаты сводим в табл.
Прямые показатели качества АСР
по возмущению | по управлению | |||||
П | И | ПИ | П | И | ПИ | |
дин. ошибка | 0,28 | 0,87 | 0,79 | 0,29 | 0,54 | 0,52 |
стат. ошибка | 0,5 | 0 | 0 | 0,53 | 1,07 | 1,08 |
ст. затух. | 0,75 | 0,75 | 0,75 | 0,75 | 0,75 | 0,75 |
ст. колеб. m | 0,221 | 0,221 | 0,221 | 0,221 | 0,221 | 0,221 |
перерег. | 0,46 | 0,51 | 0,44 | 0,52 | 0,5 | 0,52 |
tрег., с | 14,76 | 88,02 | 44,96 | 14,57 | 33,6 | 20,56 |
12 ВЫВОДЫ
1. Статическая модель объекта тем точнее описывает поведение объекта, чем выше порядок полинома.
2. Применительно к динамической модели выяснилось, что ее точность возрастает только до определенного порядка, а затем точность падает.
3. Автоматическая система регулирования с П-регулятором имеет наименьшее значение максимальной динамической ошибки, однако такой системе присуща статическая ошибка, поэтому П-регуляторы могут применяться в случаях, когда допускается отклонение регулируемой величины от заданного значения в равновесном состоянии системы (более 10%).
4. АСР с И-регулятором характеризуется относительно большой динамической ошибкой и перерегулированием, а также длительным переходным процессом, поэтому область применения И-регуляторов ограничивается объектами, допускающими относительно большое максимальное отклонение регулируемой величины. Ни при каких значениях параметров системы И-регулятор не может обеспечить устойчивого регулирования объекта, не обладающего самовыравниванием.
5. АСР с ПИ-регулятором имеет наиболее оптимальные параметры как по динамической ошибке, так и по времени переходного процесса, степени затухания, колебательности и перерегулированию, поэтому ПИ-регуляторы могут применяться при любых требованиях к значению установившегося отклонения и любом диапазоне возмущающих воздействий, если допустимое время регулирования значительно.
ЛИТЕРАТУРА
1. Дурновцев В.Я., Ширяев А.А. Расчет автоматических систем регулирования. 1. Расчет линейных АСР. - Указания по выполнению индивидуальных заданий и курсовых проектов. - Томск: Отделение № 1 ТПИ, 2988. - 92 с.
2. Основы теории автоматического регулирования: Учебник для машиностроительных специальностей вузов/В.И. Крутов, Ф.М. Данилов, П.К. Кузьмик и др.; Под ред. В.И. Крутова. - 2-е изд., перераб. и доп. - М.: Машиностроение. 1984. 368 с., ил.