Смекни!
smekni.com

Автоматическая система регулирования с П-регулятором (стр. 3 из 7)

Подставляя полученные данные, получим:

Выбираем х1, т.к только он входит в диапазон экспериментальных значений. Подставим значение х1 в (1.2) и получим значение коэффициента передачи при 10 % номинального режима:

Рассчитаем значение коэффициента передачи при 50 % по формуле:

Подставляя полученные данные, получим:

Выбираем х1, т. к только он входит в диапазон экспериментальных значений. Подставим значение х1 в (1.2) и получим значение коэффициента передачи при 50 % номинального режима:

Рассчитаем значение коэффициента передачи при 90 % по формуле:

Выбираем х1, т. к только он входит в диапазон экспериментальных значений. Подставим значение х1 в (1.2) и получим значение коэффициента передачи при 90 % номинального режима:

Результаты расчета сведены в таблицу.

Таблица 4

Коэффициенты передачи.

10% 50% 90%
х 1.287 4.518 7.824
к 0.438 0.428 0.418

Ниже приведен проверочный расчет коэффициентов передачи объекта на ЭВМ в системе MathCad.

2. Динамическая модель объекта

2.1 Постановка задачи

Динамическая модель связывает изменение входных и выходных величин во времени, то есть отражает протекание переходного процесса.

Для получения динамической характеристики объекта регулирования необходимо выполнить следующие действия:

- задаться рядом значений времени t;

- подав на вход объекта возмущение, для каждого ti зарегистрировать значение выходного сигнала yi.

Полученная, таким образом, динамическая характеристика заданного объекта регулирования, приведена в табл. 5.

Таблица 5

Динамическая характеристика объекта регулирования

i 1 2 3 4 5 6 7 8 9 10
t 0 1 2 3 4 5 6 7 8 9
Y 0 0 0.5 0.71 0.8 0.91 0.98 0.99 0.995 1

Для получения аналитической зависимости, заданную таблично динамическую характеристику необходимо аппроксимировать экспоненциальным выражением первого порядка. Затем, по наименьшему значению суммы квадратов отклонений для характеристик без запаздывания и с запаздыванием, нужно выбрать наиболее приближенную к экспериментальным данным динамическую характеристику.

После расчета выполненного вручную следует проверить его на ПЭВМ в системе MathCad, а также произвести расчет динамической характеристики второго порядка и выбрать наиболее точную.

2.2 Модель объекта первого порядка без запаздывания

Динамическая модель первого порядка без запаздывания представляет собой неоднородное дифференциальное уравнение первого порядка:

(2.1)

где T - постоянная времени объекта;

k - коэффициент передачи при 50% номинального режима.

Решением уравнения (2.1) будет экспоненциальная зависимость сигнала на выходе от времени:

(2.2)

где y0=0 - начальное состояние выхода объекта;

k.x=yуст.=10 - установившееся состояние выхода объекта.

Преобразовав выражение (2.2), получим:

(2.3)

Обозначим левую часть выражения (2.3) как

. Значения
и их натуральные логарифмы приведены в табл. 6.

Таблица 6

Значения

и
i 1 2 3 4 5 6 7 8 9 10
yi 0 0 0.5 0.71 0.8 0.91 0.98 0.99 0.995 1
1 1 0.5 0.29 0.2 0.09 0.02 0.01 0.005 0
0 0 -0.693 -1.238 -1.609 -2.408 -3.912 -4.605 -5.298 -∞

Преобразовав выражение (2.3), получим:

откуда по методу наименьших квадратов найдем постоянную времени:

Таким образом динамическая характеристика первого порядка без запаздывания будет иметь вид:

Вычислим аналитические значения функции, их отклонения от экспериментальных значений, а также квадраты отклонений и сведем их в

Таблица 7

Результаты расчета

i 1 2 3 4 5 6 7 8 9 10
yi 0 0 0.5 0.71 0.8 0.91 0.98 0.99 0.995 1
yiанал 0 0.46 0.708 0.843 0.915 0.954 0.975 0.987 0.993 0.996
yi
0 -0.46 -0.208 -0.133 -0.115 -0.044 4.8∙10-3 3.4∙10-3 2.2∙10-3 3.9∙10-3
0.000 0.212 0.043 0.018 0.013 1.9∙10-3 2.3∙10-5 1.1∙10-5 4.9∙10-6 1.5∙10-5

Далее находим сумму квадратов отклонений:

Динамическая модель объекта первого порядка без запаздывания является наименее точной, поэтому ее применение не целесообразно при моделировании динамики объекта. Ниже приведен проверочный расчет динамической модели объекта первого порядка без запаздыванием и модели второго порядка без запаздыванием на ЭВМ в системе MathCad.


2.3 Модель объекта первого порядка с запаздыванием

Динамическая модель первого порядка с запаздыванием представляет собой неоднородное дифференциальное уравнение первого порядка:

(2.4)

где T - постоянная времени объекта;

k - коэффициент передачи при 50% номинального режима;

- время запаздывания.

Решением уравнения (2.1) будет экспоненциальная зависимость сигнала на выходе от времени:

(2.5)

где y0=0 - начальное состояние выхода объекта;

k.x=yуст.=10 - установившееся состояние выхода объекта.

Проведем преобразования, аналогичные модели без запаздывания

или запишем в виде системы :

(2.6)

где

берется из табл. 7.

Так как

,
и
, то все уравнения содержащие эти элементы в расчете участвовать не будут.

Решим систему (2.6) методом наименьших квадратов. Составим матрицы:

- искомых величин:

- правой части системы:

- левой части системы:

- произведение

- произведение

Таким образом получили матричное уравнение:

Находим главный определитель:

Подставляя матрицу

поочередно в первый и второй столбец матрицы
, находим вспомогательные определители: