Подставляя полученные данные, получим:
Выбираем х1, т.к только он входит в диапазон экспериментальных значений. Подставим значение х1 в (1.2) и получим значение коэффициента передачи при 10 % номинального режима:
Рассчитаем значение коэффициента передачи при 50 % по формуле:
Подставляя полученные данные, получим:
Выбираем х1, т. к только он входит в диапазон экспериментальных значений. Подставим значение х1 в (1.2) и получим значение коэффициента передачи при 50 % номинального режима:
Рассчитаем значение коэффициента передачи при 90 % по формуле:
Выбираем х1, т. к только он входит в диапазон экспериментальных значений. Подставим значение х1 в (1.2) и получим значение коэффициента передачи при 90 % номинального режима:
Результаты расчета сведены в таблицу.
Таблица 4
Коэффициенты передачи.
10% | 50% | 90% | |
х | 1.287 | 4.518 | 7.824 |
к | 0.438 | 0.428 | 0.418 |
Ниже приведен проверочный расчет коэффициентов передачи объекта на ЭВМ в системе MathCad.
2. Динамическая модель объекта
2.1 Постановка задачи
Динамическая модель связывает изменение входных и выходных величин во времени, то есть отражает протекание переходного процесса.
Для получения динамической характеристики объекта регулирования необходимо выполнить следующие действия:
- задаться рядом значений времени t;
- подав на вход объекта возмущение, для каждого ti зарегистрировать значение выходного сигнала yi.
Полученная, таким образом, динамическая характеристика заданного объекта регулирования, приведена в табл. 5.
Таблица 5
Динамическая характеристика объекта регулирования
i | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
t | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
Y | 0 | 0 | 0.5 | 0.71 | 0.8 | 0.91 | 0.98 | 0.99 | 0.995 | 1 |
Для получения аналитической зависимости, заданную таблично динамическую характеристику необходимо аппроксимировать экспоненциальным выражением первого порядка. Затем, по наименьшему значению суммы квадратов отклонений для характеристик без запаздывания и с запаздыванием, нужно выбрать наиболее приближенную к экспериментальным данным динамическую характеристику.
После расчета выполненного вручную следует проверить его на ПЭВМ в системе MathCad, а также произвести расчет динамической характеристики второго порядка и выбрать наиболее точную.
2.2 Модель объекта первого порядка без запаздывания
Динамическая модель первого порядка без запаздывания представляет собой неоднородное дифференциальное уравнение первого порядка:
(2.1)где T - постоянная времени объекта;
k - коэффициент передачи при 50% номинального режима.
Решением уравнения (2.1) будет экспоненциальная зависимость сигнала на выходе от времени:
(2.2)где y0=0 - начальное состояние выхода объекта;
k.x=yуст.=10 - установившееся состояние выхода объекта.
Преобразовав выражение (2.2), получим:
(2.3)Обозначим левую часть выражения (2.3) как
. Значения и их натуральные логарифмы приведены в табл. 6.Таблица 6
Значения
иi | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
yi | 0 | 0 | 0.5 | 0.71 | 0.8 | 0.91 | 0.98 | 0.99 | 0.995 | 1 |
1 | 1 | 0.5 | 0.29 | 0.2 | 0.09 | 0.02 | 0.01 | 0.005 | 0 | |
0 | 0 | -0.693 | -1.238 | -1.609 | -2.408 | -3.912 | -4.605 | -5.298 | -∞ |
Преобразовав выражение (2.3), получим:
откуда по методу наименьших квадратов найдем постоянную времени:
Таким образом динамическая характеристика первого порядка без запаздывания будет иметь вид:
Вычислим аналитические значения функции, их отклонения от экспериментальных значений, а также квадраты отклонений и сведем их в
Таблица 7
Результаты расчета
i | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
yi | 0 | 0 | 0.5 | 0.71 | 0.8 | 0.91 | 0.98 | 0.99 | 0.995 | 1 |
yiанал | 0 | 0.46 | 0.708 | 0.843 | 0.915 | 0.954 | 0.975 | 0.987 | 0.993 | 0.996 |
yi | 0 | -0.46 | -0.208 | -0.133 | -0.115 | -0.044 | 4.8∙10-3 | 3.4∙10-3 | 2.2∙10-3 | 3.9∙10-3 |
0.000 | 0.212 | 0.043 | 0.018 | 0.013 | 1.9∙10-3 | 2.3∙10-5 | 1.1∙10-5 | 4.9∙10-6 | 1.5∙10-5 |
Далее находим сумму квадратов отклонений:
Динамическая модель объекта первого порядка без запаздывания является наименее точной, поэтому ее применение не целесообразно при моделировании динамики объекта. Ниже приведен проверочный расчет динамической модели объекта первого порядка без запаздыванием и модели второго порядка без запаздыванием на ЭВМ в системе MathCad.
2.3 Модель объекта первого порядка с запаздыванием
Динамическая модель первого порядка с запаздыванием представляет собой неоднородное дифференциальное уравнение первого порядка:
(2.4)где T - постоянная времени объекта;
k - коэффициент передачи при 50% номинального режима;
- время запаздывания.Решением уравнения (2.1) будет экспоненциальная зависимость сигнала на выходе от времени:
(2.5)где y0=0 - начальное состояние выхода объекта;
k.x=yуст.=10 - установившееся состояние выхода объекта.
Проведем преобразования, аналогичные модели без запаздывания
или запишем в виде системы :
(2.6)где
берется из табл. 7.Так как
, и , то все уравнения содержащие эти элементы в расчете участвовать не будут.Решим систему (2.6) методом наименьших квадратов. Составим матрицы:
- искомых величин:
- правой части системы:
- левой части системы:
- произведение
- произведение
Таким образом получили матричное уравнение:
Находим главный определитель:
Подставляя матрицу
поочередно в первый и второй столбец матрицы , находим вспомогательные определители: