Смекни!
smekni.com

Автоматизированная система изучения тепловых режимов устройств ЭВС (стр. 9 из 19)

Рассчитаем по (4.2.13), учитывая справочные данные по потребляемой мощности применяемых микросхем [5,13], принимая во внимание возможные размеры трассировочного поля и наихудший вариант трассировки и наихудший случай по максимальной нагрузке на одну шину, шины питания и земли для цифровой части Sпз. ц, шины питания и земли для аналоговой части Sпз. а+5в, Sпз. а±15 .

Таким образом, получим:

2];

2];

2].

Если принять толщину фольги равной 50 мкм (наиболее распространенная толщина для отечественных марок фольгированного стеклотекстолита [11]), получим следующие значения для минимальной ширины шин:

[мм];

[мм];

[мм].

Таким образом, из полученных результатов видно, что только ширина шины питания и земли для цифровой части модуля АЦП реально превосходит номинальное значение ширины печатного проводника для разрабатываемой ПП (таблице 4.7).

Полученные в результате выполнения конструктивно-технологического расчета конкретные значения параметров и размеров ЭПМ должны быть обеспечены в процессе изготовления печатной платы.

4.3 Выбор и обоснование компоновочных решений

Под компоновкой понимают размещение в пространстве или на плоскости всех необходимых схемных элементов разрабатываемой конструкции при условии обеспечения соответствия параметров работы устройства предъявленным техническим требованиям. Задачами компоновки являются выбор форм, размеров, ориентации, определение взаимного расположения основных схемных и конструктивных элементов на плоскости и в пространстве. От правильного выбора компоновочного решения зависят такие параметры разрабатываемого устройства, как габариты, надежность, помехоустойчивость, быстродействие. Чем плотнее будут располагаться корпуса микросхем (ЭРЭ) на плоскости печатной платы, тем сложнее автоматизировать их монтаж, тем более жестким будет температурный режим их работы, тем больший уровень помех будет наводиться в сигнальных связях. И наоборот, чем больше расстояние между микросхемами, тем менее эффективно используется физический объем конструкции, тем больше длина связей. Поэтому при осуществлении компоновочного решения следует учитывать все последствия того или иного выбранного варианта.

Для разрабатываемой конструкции выбор конкретного компоновочного решения будет определяться в первую очередь схемотехнической реализацией устройства (количеством ИМС и ЭРЭ и связями между ними), используемой элементной базой (типоразмерами корпусов микросхем и ЭРЭ), конструктивом интерфейса между модулем и персональным компьютером (ISA).

Размеры ПП выбираются из зоны размеров печатных плат [11]. Количество возможных значений размеров (высоты и ширины) весьма велико. Однако, до 100 мм можно применять любые размеры, кратные 2,5 мм, до 350 мм – 5,0 мм и свыше 350 мм – кратные 10 мм. Кроме того, наибольший размер должен быть не более 470 мм в любом направлении. Также устанавливается ограничение на на соотношение сторон: оно должно быть не более 1:4.

Как было обосновано в п. 4.2, наиболее целесообразным представляется использование корпусов 42 типа с шагом выводов 1,25 мм.

При выборе компоновочного решения необходимо руководствоваться рядом общих правил и положений, среди которых можно выделить следующие [2]:

1) по краям платы следует предусматривать технологическую зону шириной 1,5 – 2,0 мм. Размещение установочных и других отверстий, а также печатных проводников в этой зоне не допускается. Все отверстия должны располагаться в узлах координатной сетки. В том случае, если шаг расположения выводов микросхем не соответствует шагу координатной сетки, одно из отверстий под вывод (желательно первый) микросхемы должно обязательно располагаться в узле координатной сетки;

2) для правильной ориентации микросхем при их установке на ПП на последней должны быть предусмотрены «ключи», определяющие положение первого вывода микросхемы;

3) конденсаторы, резисторы и другие навесные элементы следует располагать параллельно координатной сетке;

4) на ПП должен быть предусмотрен ориентирующий паз (или срезанный левый угол) или технологические базовые отверстия, необходимые для правильной ориентации при изготовлении ДПП;

5) печатные проводники следует по возможности выполнять минимально короткими (этому должно способствовать соответствующее размещение ИМС и ЭРЭ на ПП – необходимо учитывать взаимные электрические связи между ними). Не рекомендуется прокладка сигнальных проводников в непосредственной близости и параллельно друг другу во избежание возникновения паразитных наводок;

6) распределение ИМС и ЭРЭ на ПП должно быть по возможности равномерным;

8) на шинах питания микросхем на группу из нескольких ИМС устанавливаются фильтрующие емкости;

7) число отверстий различных диаметров следует сводить к минимуму для повышения технологичности производства ПП.

Реализация принятых компоновочных решений представлена на сборочном чертеже модуля (БГУИ. 411117.001СБ).

Реализацию принятых компоновочных решений необходимо количественно подтвердить с точки зрения проверки разработанной конструкции на вибропрочность. Целесообразность проведения данного расчета обуславливается возможностью возникновения необходимости эксплуатации разрабатываемой системы вблизи некоторого оборудования, являющегося источником вибрационных воздействий.

Расчет на вибрапрочность проводится путем расчета собственной частоты колебаний платы, условно заменяя ее реальную конструкцию балочной схемой. Плата представляется в виде прямоугольной пластины с соответствующим способом крепления.

Формула для расчета собственной частоты имеет вид :

, (4.3.1)

где Km - поправочный коэффициент на материал, рассчитываемый по формуле :

, (4.3.2)

где Е, Р - модуль упругости и плотность применяемого материала;

Ес, Рс - модуль упругости и плотность стали;

Кв – поправочный коэффициент веса элементов, определяемый по формуле :

, (4.3.3)

где Рэ - вес элементов, равномерно размещенных по пластине; Рп- вес пластины;

В - частотная постоянная, рассчитываемая по формуле:

, (4.3.3)

- коэффициент, зависящий от вида закрепления и соотношения сторон пластины; Е - модуль нормальной упругости; g - ускорение свободного падения; Р - плотность материала пластины; Еps - коэффициент Пуассона;

h - толщина пластины;

A - длина пластины.

Если известны резонансные частоты Fi для всех входящих в блок устройств, то резонансная частота блока Fпл. рассчитывается по формуле:

, (4.3.4)

Разрабатываемая плата должна обладать усталостной долговечностью при воздействии вибрации. Для этого необходимо, чтобы минимальная частота собственных колебаний платы удовлетворяла условию:

, ( 4.3.5)

где nb - вибрационные перегрузки в единицах g;

b - размер короткой стороны платы;

- безразмерная постоянная, числовое значение которой зависит от значения частоты собственных колебаний и воздействующих ускорений [2].

Резонансную частоту разработанной платы модуля АЦП рассчитаем с помощью «ПППКЭВС».

Исходные данные для расчета приняты на основании сборочного чертежа модуля (БГУИ.411117.001СБ), массагабаритных характеристик применяемых ИМС и ЭРЭ [5,13], требуемого вида закрепления модуля в ПЭВМ, а также справочных данных на материалы [2] и представлены в таблице 4.3.1.

Таблица 4.3.1 – Исходные данные к рачету вибропрочности

Параметр Значение
Масса пластины, кг 0,088
Масса элементов, кг 0,075
Толщина пластины, см 0,15
Длина пластины, см 34
Ширина пластины, см 10,5
Поправочный коэффициент на материал (Км) 0,54
Частотная постоянная (
)
85

В результате расчета получено значение резонансной частоты для разрабатываемого модуля, равное 43,7 Гц. Проверим условие(4.3.5):

Таким образом, условие (4.3.5) справедливо, следовательно, разработанная плата модуля АЦП будет обладать достаточной усталостной долговечностью при воздействии вибрации.

5 РАЗРАБОТКА ПРОГРАММНОГО ОБЕСПЕЧЕНИЯ

5.1 Общие требования к структуре и составу программного обеспечения, разработка алгоритма работы

Программное обеспечение (ПО) для разрабатываемой системы должно представлять собой комплекс системных и прикладных программ, позволяющих пользователю эффективно взаимодействовать с автоматизированной системой (управлять работой, реализовывать запросов и т. п.), получать объективную информацию о результатах производимых исследований.